咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 2 篇 理学
    • 2 篇 数学
  • 2 篇 工学
    • 1 篇 机械工程
    • 1 篇 计算机科学与技术...

主题

  • 3 篇 moving-mesh meth...
  • 1 篇 deep neural netw...
  • 1 篇 complex geometri...
  • 1 篇 hyperbolic conse...
  • 1 篇 car and tire aer...
  • 1 篇 flows with movin...
  • 1 篇 gas turbine flow...
  • 1 篇 interface proble...
  • 1 篇 isogeometric ana...
  • 1 篇 hyperbolic balan...
  • 1 篇 ventricle-valve-...
  • 1 篇 finite-volume me...
  • 1 篇 phase transition
  • 1 篇 multiscale model...

机构

  • 1 篇 waseda univ dept...
  • 1 篇 univ washington ...
  • 1 篇 univ washington ...
  • 1 篇 univ messina dep...
  • 1 篇 institute of app...
  • 1 篇 waseda univ fac ...
  • 1 篇 rice univ mech e...
  • 1 篇 brown univ sch e...

作者

  • 1 篇 bazilevs yuri
  • 1 篇 jim magiera
  • 1 篇 takizawa kenji
  • 1 篇 christian rohde
  • 1 篇 fazio r
  • 1 篇 tezduyar tayfun ...
  • 1 篇 leveque rj

语言

  • 3 篇 英文
检索条件"主题词=Moving-mesh methods"
3 条 记 录,以下是1-10 订阅
排序:
Isogeometric analysis in computation of complex-geometry flow problems with moving boundaries and interfaces
收藏 引用
MATHEMATICAL MODELS & methods IN APPLIED SCIENCES 2024年 第1期34卷 7-56页
作者: Tezduyar, Tayfun E. Takizawa, Kenji Bazilevs, Yuri Rice Univ Mech Engn MS 3216100 Main St Houston TX 77005 USA Waseda Univ Fac Sci & Engn 3-4-1 OokuboShinjuku Ku Tokyo 1698555 Japan Waseda Univ Dept Modern Mech Engn 3-4-1 OokuboShinjuku Ku Tokyo 1698555 Japan Brown Univ Sch Engn 184 Hope St Providence RI USA
Flows with moving boundaries and interfaces (MBI) are a large class of problems that include fluid-particle and fluid-structure interactions, and in broader terms, moving solid surfaces. They also include multi-fluid ... 详细信息
来源: 评论
A Multiscale Method for Two-Component,Two-Phase Flow with a Neural Network Surrogate
收藏 引用
Communications on Applied Mathematics and Computation 2024年 第4期6卷 2265-2294页
作者: Jim Magiera Christian Rohde Institute of Applied Analysis and Numerical Simulation University of StuttgartPfaffenwaldring 5770569StuttgartGermany
Understanding the dynamics of phase boundaries in fluids requires quantitative knowledge about the microscale processes at the *** consider the sharp-interface motion of the compressible two-component flow and propose... 详细信息
来源: 评论
moving-mesh methods for one-dimensional hyperbolic problems using CLAWPACK
收藏 引用
COMPUTERS & MATHEMATICS WITH APPLICATIONS 2003年 第1-3期45卷 273-298页
作者: Fazio, R LeVeque, RJ Univ Messina Dept Math I-98165 Messina Italy Univ Washington Dept Appl Math Seattle WA 98195 USA Univ Washington Dept Math Seattle WA 98195 USA
We develop a one-dimensional moving-mesh method for hyperbolic systems of conservation laws. This method is based on the high-resolution finite-volume "wave-propagation method", implemented in the CLAWPACK s... 详细信息
来源: 评论