咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 129 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 114 篇 工学
    • 76 篇 计算机科学与技术...
    • 40 篇 电气工程
    • 14 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 软件工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 动力工程及工程热...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 石油与天然气工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 地质资源与地质工...
  • 26 篇 理学
    • 14 篇 生物学
    • 7 篇 数学
    • 5 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地理学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 14 篇 医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 3 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 6 篇 农学

主题

  • 129 篇 multi-kernel lea...
  • 9 篇 kernel
  • 8 篇 support vector r...
  • 8 篇 support vector m...
  • 8 篇 online learning
  • 8 篇 classification
  • 6 篇 svm
  • 6 篇 feature selectio...
  • 5 篇 task analysis
  • 5 篇 extreme learning...
  • 5 篇 random features
  • 4 篇 fault diagnosis
  • 4 篇 transfer learnin...
  • 4 篇 semi-supervised ...
  • 4 篇 kernel learning
  • 4 篇 feature extracti...
  • 4 篇 manifold regular...
  • 4 篇 training
  • 3 篇 support vector m...
  • 3 篇 multi-view learn...

机构

  • 5 篇 univ alberta com...
  • 4 篇 northeastern uni...
  • 3 篇 ludong univ sch ...
  • 3 篇 univ minnesota d...
  • 3 篇 northeastern uni...
  • 3 篇 chinese acad sci...
  • 3 篇 nanjing univ inf...
  • 3 篇 univ minnesota d...
  • 2 篇 ucl ctr med imag...
  • 2 篇 northeastern uni...
  • 2 篇 univ minnesota d...
  • 2 篇 northeastern uni...
  • 2 篇 ucl inst neurol ...
  • 2 篇 xidian univ sch ...
  • 2 篇 shaanxi key lab ...
  • 2 篇 southern med uni...
  • 2 篇 univ dayton dept...
  • 2 篇 cent south univ ...
  • 2 篇 cent south univ ...
  • 2 篇 shandong inst bu...

作者

  • 6 篇 giannakis georgi...
  • 5 篇 cao peng
  • 5 篇 zaiane osmar
  • 4 篇 zhang yuanpeng
  • 4 篇 huang min
  • 4 篇 zhao dazhe
  • 4 篇 liu xiaoli
  • 4 篇 liu jin
  • 3 篇 pan yi
  • 3 篇 gao guangxia
  • 3 篇 zhang zhiwang
  • 3 篇 wang jim jing-ya...
  • 3 篇 wang jianxin
  • 3 篇 yang jinzhu
  • 3 篇 zhang jian
  • 3 篇 honeine paul
  • 3 篇 tian yingjie
  • 3 篇 yanning shen
  • 2 篇 lu qin
  • 2 篇 zhang jiang

语言

  • 127 篇 英文
  • 1 篇 其他
检索条件"主题词=Multi-Kernel Learning"
129 条 记 录,以下是1-10 订阅
排序:
multi-kernel learning for Heterogeneous Data
收藏 引用
IEEE ACCESS 2025年 13卷 45340-45349页
作者: Liao, Chunlan Peng, Shili Guangzhou Panyu Polytech Guangzhou 511483 Peoples R China Guangdong Univ Finance Dept Internet Finance Guangzhou 510521 Peoples R China
multi-kernel learning is an excellent machine learning algorithm widely used in various learning tasks such as classification and regression. Traditional kernel methods mainly focus on numerical data and lack sufficie... 详细信息
来源: 评论
An Efficient Adaptive multi-kernel learning With Safe Screening Rule for Outlier Detection
收藏 引用
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING 2024年 第8期36卷 3656-3669页
作者: Wang, Xinye Duan, Lei He, Chengxin Chen, Yuanyuan Wu, Xindong Sichuan Univ Sch Comp Sci Chengdu 610065 Peoples R China Zhejiang Lab Res Ctr Knowledge Engn Hangzhou 311121 Peoples R China
Recent advances in multi-kernel-based methods for outlier detection have positioned them as an attractive way to detect instances that are markedly different from the remaining data in a dataset. Currently, most outli... 详细信息
来源: 评论
Auto-Weighted multi-View Deep Non-Negative Matrix Factorization With multi-kernel learning
收藏 引用
IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS 2025年 11卷 23-34页
作者: Yang, Xuanhao Che, Hangjun Leung, Man-Fai Liu, Cheng Wen, Shiping Southwest Univ Coll Elect & Informat Engn Chongqing 400715 Peoples R China Chongqing Key Lab Nonlinear Circuits & Intelligent Chongqing 400715 Peoples R China Anglia Ruskin Univ Fac Sci & Engn Sch Comp & Informat Sci Cambridge CB1 1PT England Shantou Univ Dept Comp Sci Shantou 515063 Guangdong Peoples R China Univ Technol Sydney Australian Artificial Intelligence Inst Fac Engn & Informat Technol Sydney NSW 2007 Australia
Deep matrix factorization (DMF) has the capability to discover hierarchical structures within raw data by factorizing matrices layer by layer, allowing it to utilize latent information for superior clustering performa... 详细信息
来源: 评论
multi-Modality Fusion & Inductive Knowledge Transfer Underlying Non-Sparse multi-kernel learning and Distribution Adaption
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023年 第4期20卷 2387-2397页
作者: Zhang, Yuanpeng Xia, Kaijian Jiang, Yizhang Qian, Pengjiang Cai, Weiwei Qiu, Chengyu Lai, Khin Wee Wu, Dongrui Nantong Univ Med Nursing Sch Dept Med Informat Nantong 226001 Jiangsu Peoples R China Univ Malaya Fac Engn Dept Biomed Engn Kuala Lumpur 50603 Malaysia Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Jiangsu Peoples R China Huazhong Univ Sci & Technol Lab Image Proc & Intelligent Control Minist Educ Wuhan 430074 Hubei Peoples R China Jiangnan Univ Sch Artificial Intelligence & Comp Sci Wuxi 214122 Jiangsu Peoples R China Cent South Univ Forestry & Technol Sch Logist & Transportat Changsha 410004 Peoples R China AiTech Artificial Intelligence Res Inst Changsha 410000 Peoples R China
With the development of sensors, more and more multimodal data are accumulated, especially in biomedical and bioinformatics fields. Therefore, multimodal data analysis becomes very important and urgent. In this study,... 详细信息
来源: 评论
Graph-Aided Online multi-kernel learning
收藏 引用
JOURNAL OF MACHINE learning RESEARCH 2023年 第1期24卷 1-44页
作者: Ghari, Pouya M. Shen, Yanning Univ Calif Irvine Dept Elect Engn & Comp Sci Irvine CA 92697 USA
multi-kernel learning (MKL) has been widely used in learning problems involving function learning tasks. Compared with single kernel learning approach which relies on a pre-selected kernel, the advantage of MKL is its... 详细信息
来源: 评论
A Stochastic Configuration Network with Attenuation Regularization and multi-kernel learning and Its Application  36
A Stochastic Configuration Network with Attenuation Regulari...
收藏 引用
36th Chinese Control and Decision Conference (CCDC)
作者: Zang, Xinyan Yan, Aijun Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Minist Educ Engn Res Ctr Digital Community Beijing 100124 Peoples R China Beijing Univ Technol Beijing Peoples R China Beijing Lab Urban Mass Transit Beijing 100124 Peoples R China
To improve the generalization and robustness of the stochastic configuration network (SCN) model, an improved SCN algorithm is proposed. Attenuated L-2 regularization is added to the iterative solution process of the ... 详细信息
来源: 评论
Identify ncRNA Subcellular Localization via Graph Regularized k-Local Hyperplane Distance Nearest Neighbor Model on multi-kernel learning
收藏 引用
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022年 第6期19卷 3517-3529页
作者: Zhou, Haohao Wang, Hao Tang, Jijun Ding, Yijie Guo, Fei Tianjin Univ Coll Intelligence & Comp Sch Comp Sci & Technol Tianjin 300072 Peoples R China Univ South Carolina Dept Comp Sci & Engn Columbia SC 29208 USA Univ Elect Sci & Technol China Yangtze Delta Region Inst Quzhou Quzhou 324000 Zhejiang Peoples R China Cent South Univ Sch Comp Sci & Engn Changsha 410083 Hunan Peoples R China
Non-coding RNAs (ncRNAs) are a type of RNAs which are not used to encode protein sequences. Emerging evidence shows that lots of ncRNAs may participate in many biological processes and must be widely involved in many ... 详细信息
来源: 评论
A New L1 multi-kernel learning Support Vector Regression Ensemble Algorithm With AdaBoost
收藏 引用
IEEE ACCESS 2022年 10卷 20375-20384页
作者: Xie, Xiaojin Luo, Kangyang Wang, Guoqiang Shanghai Univ Engn Sci Sch Math Phys & Stat Shanghai 201620 Peoples R China East China Normal Univ Sch Data Sci & Engn Shanghai 200062 Peoples R China
This paper proposes a new multi-kernel learning ensemble algorithm, called Ada-L1MKL-WSVR, which can be regarded as an extension of multi-kernel learning (MKL) and weighted support vector regression (WSVR). The first ... 详细信息
来源: 评论
multi-kernel learning for multi-label classification with local Rademacher complexity
收藏 引用
INFORMATION SCIENCES 2023年 第1期647卷
作者: Wang, Zhenxin Chen, Degang Che, Xiaoya North China Elect Power Univ Sch Control & Comp Engn Beijing 100206 Peoples R China North China Elect Power Univ Sch Math & Phys Beijing 100206 Peoples R China
multi-label classification aims to construct prediction models from input space to output space for multi-label datesets. However, the feature space of multi-label dataset and the hypothesis space of classifier are al... 详细信息
来源: 评论
GRAPH NEURAL NETWORK WITH multi-kernel learning FOR multiSPECTRAL POINT CLOUD CLASSIFICATION
GRAPH NEURAL NETWORK WITH MULTI-KERNEL LEARNING FOR MULTISPE...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Zhang, Zifeng Wang, Qingwang Wang, Mingye Shen, Tao Kunming Univ Sci & Technol Kunming Yunnan Peoples R China Yunnan Key Lab Comp Technol Applicat Kunming Yunnan Peoples R China
multispectral point clouds provide the data basis for finer land cover classification due to the simultaneous spatial and spectral information. How to jointly utilize spatial-spectral information becomes a hot researc... 详细信息
来源: 评论