咨询与建议

限定检索结果

文献类型

  • 89 篇 期刊文献
  • 39 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 129 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 114 篇 工学
    • 76 篇 计算机科学与技术...
    • 40 篇 电气工程
    • 14 篇 信息与通信工程
    • 13 篇 控制科学与工程
    • 12 篇 软件工程
    • 6 篇 生物医学工程(可授...
    • 4 篇 动力工程及工程热...
    • 3 篇 机械工程
    • 3 篇 仪器科学与技术
    • 3 篇 石油与天然气工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 电子科学与技术(可...
    • 2 篇 测绘科学与技术
    • 1 篇 光学工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 化学工程与技术
    • 1 篇 地质资源与地质工...
  • 26 篇 理学
    • 14 篇 生物学
    • 7 篇 数学
    • 5 篇 物理学
    • 4 篇 统计学(可授理学、...
    • 2 篇 地理学
    • 2 篇 地球物理学
    • 1 篇 化学
    • 1 篇 系统科学
  • 14 篇 医学
    • 8 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 3 篇 特种医学
    • 2 篇 医学技术(可授医学...
  • 9 篇 管理学
    • 8 篇 管理科学与工程(可...
  • 6 篇 农学

主题

  • 129 篇 multi-kernel lea...
  • 9 篇 kernel
  • 8 篇 support vector r...
  • 8 篇 support vector m...
  • 8 篇 online learning
  • 8 篇 classification
  • 6 篇 svm
  • 6 篇 feature selectio...
  • 5 篇 task analysis
  • 5 篇 extreme learning...
  • 5 篇 random features
  • 4 篇 fault diagnosis
  • 4 篇 transfer learnin...
  • 4 篇 semi-supervised ...
  • 4 篇 kernel learning
  • 4 篇 feature extracti...
  • 4 篇 manifold regular...
  • 4 篇 training
  • 3 篇 support vector m...
  • 3 篇 multi-view learn...

机构

  • 5 篇 univ alberta com...
  • 4 篇 northeastern uni...
  • 3 篇 ludong univ sch ...
  • 3 篇 univ minnesota d...
  • 3 篇 northeastern uni...
  • 3 篇 chinese acad sci...
  • 3 篇 nanjing univ inf...
  • 3 篇 univ minnesota d...
  • 2 篇 ucl ctr med imag...
  • 2 篇 northeastern uni...
  • 2 篇 univ minnesota d...
  • 2 篇 northeastern uni...
  • 2 篇 ucl inst neurol ...
  • 2 篇 xidian univ sch ...
  • 2 篇 shaanxi key lab ...
  • 2 篇 southern med uni...
  • 2 篇 univ dayton dept...
  • 2 篇 cent south univ ...
  • 2 篇 cent south univ ...
  • 2 篇 shandong inst bu...

作者

  • 6 篇 giannakis georgi...
  • 5 篇 cao peng
  • 5 篇 zaiane osmar
  • 4 篇 zhang yuanpeng
  • 4 篇 huang min
  • 4 篇 zhao dazhe
  • 4 篇 liu xiaoli
  • 4 篇 liu jin
  • 3 篇 pan yi
  • 3 篇 gao guangxia
  • 3 篇 zhang zhiwang
  • 3 篇 wang jim jing-ya...
  • 3 篇 wang jianxin
  • 3 篇 yang jinzhu
  • 3 篇 zhang jian
  • 3 篇 honeine paul
  • 3 篇 tian yingjie
  • 3 篇 yanning shen
  • 2 篇 lu qin
  • 2 篇 zhang jiang

语言

  • 127 篇 英文
  • 1 篇 其他
检索条件"主题词=Multi-Kernel Learning"
129 条 记 录,以下是31-40 订阅
排序:
ALEXNET FEATURE EXTRACTION AND multi-kernel learning FOR OBJECTORIENTED CLASSIFICATION
ALEXNET FEATURE EXTRACTION AND MULTI-KERNEL LEARNING FOR OBJ...
收藏 引用
The ISPRS Technical Commission III Midterm Symposium on "Developments, Technologies and Applications in Remote Sensing"
作者: Ling Ding Hongyi Li Changmiao Hu Wei Zhang Shumin Wang Institute of Earthquake Forecasting China Earthquake Administration Institute of Remote Sensing and Digital Earth Chinese Academy of Sciences
In view of the fact that the deep convolutional neural network has stronger ability of feature learning and feature expression,an exploratory research is done on feature extraction and classification for high resoluti... 详细信息
来源: 评论
ONLINE multi-kernel learning WITH ORTHOGONAL RANDOM FEATURES
ONLINE MULTI-KERNEL LEARNING WITH ORTHOGONAL RANDOM FEATURES
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Yanning Shen Tianyi Chen Georgios B. Giannakis Dept. of ECE and DTC University of Minnesota Minneapolis USA
kernel-based methods have well-appreciated performance in various nonlinear learning tasks. Most of them rely on a preselected kernel, whose prudent choice presumes task-specific prior information. To cope with this l... 详细信息
来源: 评论
multi-kernel extreme learning machine for EEG classification in brain-computer interfaces
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2018年 96卷 302-310页
作者: Zhang, Yu Wang, Yu Zhou, Guoxu Jin, Jing Wang, Bei Wang, Xingyu Cichocki, Andrzej East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai Peoples R China Shanghai Ruanzhong Informat Technol Co Ltd Shanghai Peoples R China Guangdong Univ Technol Sch Automat Guangzhou Guangdong Peoples R China RIKEN Brain Sci Inst Lab Adv Brain Signal Proc Wako Saitama Japan Skolkovo Inst Sci & Technol SKOLTECH Moscow 143026 Russia
One of the most important issues for the development of a motor-imagery based brain-computer interface (BCI) is how to design a powerful classifier with strong generalization capability. Extreme learning machine (ELM)... 详细信息
来源: 评论
Random feature-based online multi-kernel learning in environments with unknown dynamics
The Journal of Machine Learning Research
收藏 引用
The Journal of Machine learning Research 2019年 第1期20卷
作者: Yanning Shen Tianyi Chen Georgios B. Giannakis Department of Electrical and Computer Engineering University of Minnesota Minneapolis MN
kernel-based methods exhibit well-documented performance in various nonlinear learning tasks. Most of them rely on a preselected kernel, whose prudent choice presumes task-specific prior information. Especially when t... 详细信息
来源: 评论
Semi-supervised multi-kernel Extreme learning Machine
Semi-supervised Multi-kernel Extreme Learning Machine
收藏 引用
6th International Conference on Identification, Information and Knowledge in the Internet of Things (IIKI)
作者: Abuassba, Adnan O. M. Zhang Dezheng Mahmood, Zahid Univ Sci & Technol Dept Comp Sci & Commun Engn Beijing Peoples R China Beijing Key Lab Knowledge Engn Mat Sci Beijing 100083 Peoples R China
Extreme learning machine (ELM) is a single hidden layer feed forward neural network (SLFN). It expanded to semi-supervised ELM (SSELM) to deal with unlabeled data problem. In such a problem, labeled data is either rar... 详细信息
来源: 评论
Advancing the incremental fusion of robotic sensory features using online multi-kernel extreme learning machine
收藏 引用
Frontiers of Computer Science 2017年 第2期11卷 276-289页
作者: Lele CAO Fuchun SUN Hongbo LI Wenbing HUANG State Key Laboratory of Intelligent Technology and Systems Department of Computer Science and Technology Tsinghua University Beijing 100084 China Tsinghua National Laboratory for Information Science and Technology Tsinghua University Beijing 100084 China Department of Computing and Information Systems The University of Melbourne Parkville 3010 VIC Australia
Robot recognition tasks usually require multiple homogeneous or heterogeneous sensors which intrinsically generate sequential, redundant, and storage demanding data with various noise pollution. Thus, online machine l... 详细信息
来源: 评论
Semi-supervised multi-kernel Extreme learning Machine
收藏 引用
Procedia Computer Science 2018年 129卷 305-311页
作者: Adnan OM Abuassba Zhang Dezheng Zahid Mahmood Department of Computer Science and Communication Engineering University of Science and Technology and Beijing Key Laboratory of Knowledge Engineering for Materials Science Beijing 100083 China
Extreme learning machine (ELM) is a single hidden layer feed forward neural network (SLFN). It expanded to semi-supervised ELM (SSELM) to deal with unlabeled data problem. In such a problem, labeled data is either rar... 详细信息
来源: 评论
Feature selection and multi-kernel learning for adaptive graph regularized nonnegative matrix factorization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2015年 第3期42卷 1278-1286页
作者: Wang, Jim Jing-Yan Huang, Jianhua Z. Sun, Yijun Gao, Xin KAUST Comp Elect & Math Sci & Engn Div Thuwal 239556900 Saudi Arabia Texas A&M Univ Dept Stat College Stn TX 77843 USA SUNY Buffalo Buffalo NY 14203 USA
Nonnegative matrix factorization (NMF), a popular part-based representation technique, does not capture the intrinsic local geometric structure of the data space. Graph regularized NMF (GNMF) was recently proposed to ... 详细信息
来源: 评论
multi-kernel partial label learning using graph contrast disambiguation
收藏 引用
APPLIED INTELLIGENCE 2024年 第20期54卷 9760-9782页
作者: Li, Hongyan Wan, Zhonglin Vong, Chi Man Univ Macau Fac Sci & Technol Dept Comp & Informat Sci Macau Peoples R China Dongguan City Coll Sch Artificial Intelligence Dongguan Guangdong Peoples R China Dongguan Polytech Sch Econ & Management Dongguan Guangdong Peoples R China
Partial label learning (PLL) handles data classification problems by assigning a candidate label set to each sample. There is always one correct label in a candidate label set. Since the PLL can achieve classification... 详细信息
来源: 评论
multi-kernel METRIC learning FOR PERSON RE-IDENTIFICATION  23
MULTI-KERNEL METRIC LEARNING FOR PERSON RE-IDENTIFICATION
收藏 引用
23rd IEEE International Conference on Image Processing (ICIP)
作者: Syed, Muhammad Adnan Jiao, Jianbin Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing 100049 Peoples R China
In this paper, we propose a new multi-kernel Metric learning (MKML) approach to enhance the performance of person re-identification using adaptive weighted multi-kernel. The intuition behind our approach is that diffe... 详细信息
来源: 评论