咨询与建议

限定检索结果

文献类型

  • 558 篇 期刊文献
  • 227 篇 会议
  • 3 篇 学位论文

馆藏范围

  • 788 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 752 篇 工学
    • 679 篇 计算机科学与技术...
    • 228 篇 电气工程
    • 75 篇 软件工程
    • 69 篇 控制科学与工程
    • 56 篇 信息与通信工程
    • 12 篇 机械工程
    • 12 篇 仪器科学与技术
    • 9 篇 生物医学工程(可授...
    • 8 篇 电子科学与技术(可...
    • 5 篇 测绘科学与技术
    • 5 篇 石油与天然气工程
    • 5 篇 生物工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 网络空间安全
    • 3 篇 动力工程及工程热...
  • 91 篇 理学
    • 41 篇 生物学
    • 28 篇 数学
    • 13 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 8 篇 化学
    • 8 篇 系统科学
    • 6 篇 地球物理学
    • 2 篇 地理学
    • 2 篇 生态学
  • 90 篇 管理学
    • 80 篇 管理科学与工程(可...
    • 9 篇 图书情报与档案管...
  • 43 篇 医学
    • 22 篇 基础医学(可授医学...
    • 21 篇 临床医学
    • 4 篇 特种医学
  • 15 篇 农学
  • 4 篇 文学
    • 3 篇 外国语言文学
  • 2 篇 教育学
  • 2 篇 艺术学

主题

  • 788 篇 multi-label lear...
  • 134 篇 feature selectio...
  • 46 篇 label correlatio...
  • 40 篇 machine learning
  • 39 篇 missing labels
  • 38 篇 label correlatio...
  • 34 篇 semi-supervised ...
  • 29 篇 deep learning
  • 25 篇 multi-task learn...
  • 25 篇 label-specific f...
  • 24 篇 multi-view learn...
  • 22 篇 correlation
  • 19 篇 training
  • 17 篇 feature extracti...
  • 17 篇 classification
  • 16 篇 class imbalance
  • 16 篇 label enhancemen...
  • 14 篇 label distributi...
  • 13 篇 ensemble learnin...
  • 13 篇 transfer learnin...

机构

  • 24 篇 jilin univ coll ...
  • 18 篇 minnan normal un...
  • 18 篇 southeast univ s...
  • 16 篇 nanjing univ nat...
  • 15 篇 southwest univ c...
  • 15 篇 xiamen univ dept...
  • 14 篇 anqing normal un...
  • 12 篇 jilin univ key l...
  • 10 篇 xiamen univ tech...
  • 9 篇 huaqiao univ col...
  • 9 篇 beijing jiaotong...
  • 9 篇 anhui univ techn...
  • 8 篇 hefei univ techn...
  • 8 篇 george mason uni...
  • 8 篇 nanjing univ sta...
  • 8 篇 southeast univ m...
  • 8 篇 southwest jiaoto...
  • 7 篇 harbin engn univ...
  • 7 篇 anhui univ sch c...
  • 7 篇 xiamen univ dept...

作者

  • 19 篇 liu jinghua
  • 19 篇 gao wanfu
  • 17 篇 yu guoxian
  • 17 篇 lin yaojin
  • 15 篇 cheng yusheng
  • 15 篇 zhang min-ling
  • 13 篇 geng xin
  • 12 篇 tsoumakas grigor...
  • 11 篇 zhou zhi-hua
  • 11 篇 li shaozi
  • 11 篇 zhang jia
  • 11 篇 huang jun
  • 11 篇 wang jun
  • 10 篇 li yonghao
  • 10 篇 domeniconi carlo...
  • 10 篇 weng wei
  • 9 篇 wang yibin
  • 9 篇 min fan
  • 9 篇 wu shunxiang
  • 9 篇 zhang ping

语言

  • 777 篇 英文
  • 7 篇 其他
  • 4 篇 中文
  • 3 篇 德文
  • 3 篇 法文
  • 2 篇 意大利文
检索条件"主题词=Multi-Label Learning"
788 条 记 录,以下是1-10 订阅
排序:
multi-label learning for fault diagnosis of pumping units with one positive label
收藏 引用
APPLIED SOFT COMPUTING 2025年 174卷
作者: Qian, Kun Tang, Jinyu Zhao, Qimei Zhao, Shu Min, Fan Anhui Univ Sch Comp Sci & Technol Hefei 230601 Peoples R China Southwest Petr Univ Sch Comp Sci & Software Engn Chengdu 610500 Peoples R China Chaohu Univ Sch Comp Sci & Artificial Intelligence Hefei 238024 Peoples R China Southwest Petr Univ Lab Machine Learning Chengdu 610500 Peoples R China
Fault diagnosis using the indicator diagram is a fundamental method to evaluate the working status of pumping units. In applications, human experts typically identify only one fault for each indicator diagram. However... 详细信息
来源: 评论
Partial multi-label learning via label-specific feature corrections
收藏 引用
Science China(Information Sciences) 2025年 第3期68卷 95-109页
作者: Jun-Yi HANG Min-Ling ZHANG School of Computer Science and Engineering Southeast University Key Laboratory of Computer Network and Information Integration(Southeast University) Ministry of Education
Partial multi-label learning(PML) allows learning from rich-semantic objects with inaccurate annotations, where a set of candidate labels are assigned to each training example but only some of them are valid. Existi... 详细信息
来源: 评论
Incorporating view location information for multi-view multi-label learning
收藏 引用
APPLIED SOFT COMPUTING 2025年 168卷
作者: Wang, Jiabao Cheng, Yusheng Anqing Normal Univ Sch Comp & Informat Anqing 246133 Anhui Peoples R China Key Lab Intelligent Percept & Comp Anhui Prov Anqing 246133 Anhui Peoples R China
In multi-view multi-label learning (MVML), subspace learning provides an effective solution for integrating multi-view data. However, the current learning concentrates on the shared subspace construction process and n... 详细信息
来源: 评论
Sandbox: safeguarded multi-label learning through safe optimal transport
收藏 引用
MACHINE learning 2025年 第3期114卷 1-29页
作者: Zhang, Lefei Yu, Geng Yao, Jiangchao Ong, Yew-soon Tsang, Ivor W. Kwok, James T. Nanyang Technol Univ Coll Comp & Data Sci 50 Nanyang Ave Singapore 639798 Singapore Agcy Sci Technol & Res Ctr Frontier AI Res 1 Fusionopolis Way Singapore 138632 Singapore Agcy Sci Technol & Res Inst High Performance Comp 1 Fusionopolis Way Singapore 138632 Singapore Shanghai Jiao Tong Univ Cooperat Medianet Innovat Ctr Shanghai Peoples R China Shanghai AI Lab Shanghai Peoples R China Hong Kong Univ Sci & Technol Dept Comp Sci & Engn Hong Kong Peoples R China
multi-label learning with label noise presents significant real-world challenges due to dependencies among labels, complicating the transition from clean to noisy labels. Mainstream approaches, such as robust loss fun... 详细信息
来源: 评论
NkEL: nearest k-labelsets ensemble for multi-label learning
收藏 引用
APPLIED INTELLIGENCE 2025年 第1期55卷 1-21页
作者: Zhong, Xi-Yan Zhang, Yu-Li Wang, Dan-Dong Min, Fan Southwest Petr Univ Sch Comp Sci & Software Engn Chengdu 610500 Peoples R China Southwest Petr Univ Lab Machine Learning Chengdu 610500 Peoples R China Southwest Petr Univ Intelligent Oil & Gas Lab Chengdu 610500 Peoples R China
multi-label learning (MLL) can be viewed as an extension of multi-class learning (MCL) that supports nonexclusive labels. Random k-labelset ensemble (RAkEL) is a popular algorithm that transforms MLL into a series of ... 详细信息
来源: 评论
Pushing one pair of labels apart each time in multi-label learning: from single positive to full labels
收藏 引用
SCIENCE CHINA-INFORMATION SCIENCES 2025年 第6期68卷 1-18页
作者: Li, Xiang Wang, Xinrui Chen, Songcan Nanjing Univ Aeronaut & Astronaut MIIT Key Lab Pattern Anal & Machine Intelligence Coll Artificial Intelligence Coll Comp Sci & Technol Nanjing 211106 Peoples R China
In multi-label learning (MLL), it is extremely challenging to accurately annotate every appearing object due to expensive costs and limited knowledge. When facing such a challenge, a more practical and cheaper alterna... 详细信息
来源: 评论
A diversity and reliability-enhanced synthetic minority oversampling technique for multi-label learning
收藏 引用
INFORMATION SCIENCES 2025年 690卷
作者: Gong, Yanlu Wu, Quanwang Zhou, Mengchu Chen, Chao Chongqing Univ Technol Sch Artificial Intelligence Chongqing 401135 Peoples R China Chongqing Univ Coll Comp Sci Chongqing 400030 Peoples R China New Jersey Inst Technol Dept Elect & Comp Engn Newark NJ 07102 USA
The class imbalance issue is generally intrinsic in multi-label datasets due to the fact that they have a large number of labels and each sample is associated with only a few of them. This causes the trained multi-lab... 详细信息
来源: 评论
multi-label learning based on neighborhood rough set label-specific features
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2025年 178卷
作者: Zhang, Jiadong Song, Jingjing Li, Huige Wang, Xun Yang, Xibei Jiangsu Univ Sci & Technol Sch Comp Zhenjiang 212100 Jiangsu Peoples R China
multi-label learning emerges as a novel paradigm harnessing diverse semantic datasets. Its objective involves eliciting a prognostic framework capable of allocating correlated labels to an unseen instance. Within the ... 详细信息
来源: 评论
Matrix factorization algorithm for multi-label learning with missing labels based on fuzzy rough set
收藏 引用
FUZZY SETS AND SYSTEMS 2025年 498卷
作者: Deng, Jiang Chen, Degang Wang, Hui Shi, Ruifeng North China Elect Power Univ Sch Control & Comp Engn Beijing 102206 Peoples R China North China Elect Power Univ Sch Math & Phys Beijing 102206 Peoples R China Queens Univ Belfast Sch Elect Elect Engn & Comp Sci Belfast BT9 5BN North Ireland
In multi-label learning, samples of practical classification task may associated with multiple labels, it is challenging to acquire all labels of the training samples, the rapid expansion of the label space and the si... 详细信息
来源: 评论
Hierarchical multi-granular multi-label contrastive learning
收藏 引用
PATTERN RECOGNITION 2025年 164卷
作者: Li, Haixiang Fang, Min Li, Xiao Chen, Bo Wang, Guizhi Xidian Univ Sch Comp Sci & Technol 2 South Taibai Rd Xian 710071 Shaanxi Peoples R China
multi-label classification is a task wherein predictive models are developed to assign relevant label sets to unseen instances. label correlation extraction and utilization have been widely implemented in multi-label ... 详细信息
来源: 评论