咨询与建议

限定检索结果

文献类型

  • 29 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 36 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 21 篇 计算机科学与技术...
    • 7 篇 电气工程
    • 4 篇 生物医学工程(可授...
    • 3 篇 机械工程
    • 3 篇 信息与通信工程
    • 3 篇 软件工程
    • 3 篇 安全科学与工程
    • 2 篇 仪器科学与技术
    • 1 篇 材料科学与工程(可...
    • 1 篇 冶金工程
    • 1 篇 控制科学与工程
    • 1 篇 建筑学
    • 1 篇 测绘科学与技术
    • 1 篇 交通运输工程
    • 1 篇 网络空间安全
  • 7 篇 理学
    • 5 篇 生物学
    • 2 篇 化学
    • 1 篇 数学
    • 1 篇 地理学
    • 1 篇 地球物理学
  • 7 篇 管理学
    • 7 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 6 篇 医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 临床医学
    • 1 篇 特种医学

主题

  • 36 篇 multi-source tra...
  • 5 篇 deep learning
  • 5 篇 domain adaptatio...
  • 3 篇 task analysis
  • 3 篇 transfer learnin...
  • 3 篇 node classificat...
  • 3 篇 classification
  • 2 篇 ensemble learnin...
  • 2 篇 support vector m...
  • 2 篇 motor imagery
  • 1 篇 alzheimer's dise...
  • 1 篇 covid-19
  • 1 篇 graph neural net...
  • 1 篇 source domain av...
  • 1 篇 knowledge engine...
  • 1 篇 dynamic weightin...
  • 1 篇 ultrasonic imagi...
  • 1 篇 signal detection
  • 1 篇 imaging
  • 1 篇 fault diagnosis

机构

  • 3 篇 harbin inst tech...
  • 2 篇 harbin engn univ...
  • 2 篇 pengcheng lab pe...
  • 1 篇 beijing inst rem...
  • 1 篇 chongqing univ s...
  • 1 篇 univ toronto ctr...
  • 1 篇 victoria univ bu...
  • 1 篇 shiraz univ sch ...
  • 1 篇 south china univ...
  • 1 篇 heilongjiang uni...
  • 1 篇 united automotiv...
  • 1 篇 univ tennessee h...
  • 1 篇 beihang univ sch...
  • 1 篇 beihang univ sch...
  • 1 篇 univ birmingham ...
  • 1 篇 sharnbasva univ ...
  • 1 篇 urmia univ techn...
  • 1 篇 hebei univ techn...
  • 1 篇 beijing univ tec...
  • 1 篇 nanjing univ pos...

作者

  • 4 篇 wu weifei
  • 3 篇 gao peng
  • 3 篇 li jingmei
  • 3 篇 yang hongwei
  • 3 篇 he hui
  • 3 篇 zhang weizhe
  • 2 篇 wang yan
  • 1 篇 yang bin
  • 1 篇 garg sonakshi
  • 1 篇 qin xingli
  • 1 篇 zeng hongwei
  • 1 篇 wei fulin
  • 1 篇 cheng yujie
  • 1 篇 li xin
  • 1 篇 sonawani shilpa
  • 1 篇 fan zhigang
  • 1 篇 ding yasan
  • 1 篇 yang yun
  • 1 篇 sun jie
  • 1 篇 muhuri pranab k.

语言

  • 32 篇 英文
  • 3 篇 其他
检索条件"主题词=Multi-Source Transfer Learning"
36 条 记 录,以下是1-10 订阅
排序:
multi-source transfer learning with Graph Neural Network for excellent modelling the bioactivities of ligands targeting orphan G protein-coupled receptors
收藏 引用
MATHEMATICAL BIOSCIENCES AND ENGINEERING 2023年 第2期20卷 2588-2608页
作者: Huang, Shizhen Zheng, ShaoDong Chen, Ruiqi Fuzhou Univ Coll Phys & Informat Engn Fuzhou 350116 Peoples R China Nanjing Renmian Integrated Circuit Co Ltd VeriMake Innovat Lab Nanjing 210088 Peoples R China
G protein-coupled receptors (GPCRs) have been the targets for more than 40% of the currently approved drugs. Although neural networks can effectively improve the accuracy of prediction with the biological activity, th... 详细信息
来源: 评论
Semi-supervised multi-source transfer learning for cross-subject EEG motor imagery classification
收藏 引用
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING 2024年 第6期62卷 1655-1672页
作者: Zhang, Fan Wu, Hanliang Guo, Yuxin Jinan Univ Guangzhou Peoples R China Guangzhou Liwan Dist Orthoped Hosp Guangzhou Peoples R China Guangzhou Inst Sci & Technol Guangzhou 510540 Peoples R China
Electroencephalogram (EEG) motor imagery (MI) classification refers to the use of EEG signals to identify and classify subjects' motor imagery activities;this task has received increasing attention with the develo... 详细信息
来源: 评论
Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning
收藏 引用
RELIABILITY ENGINEERING & SYSTEM SAFETY 2024年 249卷
作者: Song, Dengwei Cheng, Yujie Zhou, An Lu, Chen Chong, Jin Ma, Jian Beihang Univ Inst Reliabil Engn Beijing Peoples R China Beihang Univ Sch Instrumentat & Optoelect Engn Beijing Peoples R China Sci & Technol Reliabil & Environm Engn Lab Beijing Peoples R China Beihang Univ Sch Reliabil & Syst Engn Beijing Peoples R China Contemporary Amperex Technol Co Ltd Ningde Fujian Peoples R China
Achieving highly accurate predictions based on less data with multiple formulations has become a significant challenge. Unlike the traditional prediction model that ignores the similarities and differences between mul... 详细信息
来源: 评论
multi-source transfer learning for Signal Detection over a Fading Channel with Co-channel Interference
Multi-source Transfer Learning for Signal Detection over a F...
收藏 引用
IEEE International Conference on Communications (ICC)
作者: Zheng, Ziyan Tong, Xinyi Yu, Xinchun Xu, Xiangxiang Huang, Shao-Lun Tsinghua Univ Tsinghua Berkeley Shenzhen Inst Beijing Peoples R China MIT Dept Elect Engn & Comp Sci Cambridge MA USA
For signal detection tasks in wireless communications, most of the existing algorithms either ignore the co-channel interference or treat it as Gaussian noise, which may result in unsatisfactory accuracy when the inte... 详细信息
来源: 评论
multi-source transfer learning Via multi-Kernel Support Vector Machine Plus for B-Mode Ultrasound-Based Computer-Aided Diagnosis of Liver Cancers
收藏 引用
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS 2021年 第10期25卷 3874-3885页
作者: Zhang, Huili Guo, Lehang Wang, Dan Wang, Jun Bao, Lili Ying, Shihui Xu, Huixiong Shi, Jun Shanghai Univ Shanghai Inst Adv Commun & Data Sci Joint Int Res Lab Specialty Fiber Opt & Adv Commu Sch Commun & Informat EngnKey Lab Specialty Fibe Shanghai 200444 Peoples R China Shanghai Univ Sch Sci Dept Math Shanghai 200444 Peoples R China Tongji Univ Sch Med & Tumor Minimally Invas Treatment Ctr Ctr Ultrasound Diag & TreatmentCanc Ctr Dept Med UltrasoundShanghai Peoples Hosp 10 Shanghai 200072 Peoples R China
B-mode ultrasound (BUS) imaging is a routine tool for diagnosis of liver cancers, while contrast-enhanced ultrasound (CEUS) provides additional information to BUS on the local tissue vascularization and perfusion to p... 详细信息
来源: 评论
AG-MSTLN-EL: A multi-source transfer learning Approach to Brain Tumor Detection
收藏 引用
JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025年 第1期38卷 245-261页
作者: Biradar, Shivaprasad Virupakshappa Sharnbasva Univ Dept Comp Sci & Engn Kalaburagi Karnataka India
The analysis of medical images (MI) is an important part of advanced medicine as it helps detect and diagnose various diseases early. Classifying brain tumors through magnetic resonance imaging (MRI) poses a challenge... 详细信息
来源: 评论
multi-source transfer learning Based on the Power Set Framework
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS 2023年 第1期16卷 103-103页
作者: Song, Bingbing Pan, Jianhan Qu, Qiaoli Li, Zexin Jiangsu Normal Univ Xuzhou 221116 Peoples R China
transfer learning is a great technology that can leverage knowledge from label-rich domains to address problems in similar domains that lack labeled data. Most previous works focus on single-source transfer, assuming ... 详细信息
来源: 评论
AN OBJECT-LEVEL multi-source transfer learning METHOD INTEGRATING OPTICAL AND SAR FEATURES: A CASE STUDY OF GAOFEN, ZIYUAN, AND SENTINEL-1 SATELLITES
AN OBJECT-LEVEL MULTI-SOURCE TRANSFER LEARNING METHOD INTEGR...
收藏 引用
IEEE International Geoscience and Remote Sensing Symposium (IGARSS)
作者: Qin, Xingli Wu, Bingfang Zeng, Hongwei Zhang, Miao Tian, Fuyou Cao, Yupei Liu, Yazhou Chinese Acad Sci Aerosp Informat Res Inst Key Lab Remote Sensing & Digital Earth Beijing 100101 Peoples R China Univ Chinese Acad Sci Coll Resources & Environm Beijing 100049 Peoples R China Shandong Land Grp Digital Technol Co Ltd Zaozhuang 277000 Peoples R China
In remote sensing earth observation applications, there is often a trade-off between automated processing and improved observation accuracy. A key issue in this contradiction is the underutilization of rich knowledge ... 详细信息
来源: 评论
multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults
收藏 引用
MECHANICAL SYSTEMS AND SIGNAL PROCESSING 2022年 162卷 108095-108095页
作者: Yang, Bin Xu, Songci Lei, Yaguo Lee, Chi-Guhn Stewart, Edward Roberts, Clive Xi An Jiao Tong Univ Key Lab Educ Minist Modern Design & Rotor Bearing Syst Xian 710049 Peoples R China Univ Toronto Ctr Maintenance Optimizat & Reliabil Engn Toronto ON M5S 3G8 Canada Univ Birmingham Ctr Railway Res & Educ Birmingham B15 2TT W Midlands England
Most of the current successes of deep transfer learning-based fault diagnosis require two assumptions: 1) the health state set of source machines should overlap that of target machines;2) the number of target machine ... 详细信息
来源: 评论
multi-source transfer learning of time series in cyclical manufacturing
收藏 引用
JOURNAL OF INTELLIGENT MANUFACTURING 2020年 第3期31卷 777-787页
作者: Zellinger, Werner Grubinger, Thomas Zwick, Michael Lughofer, Edwin Schoener, Holger Natschlaeger, Thomas Saminger-Platz, Susanne Johannes Kepler Univ Linz Dept Knowledge Based Math Syst Linz Austria Software Competence Ctr Hagenberg GmbH Hagenberg Im Muhlkreis Austria
This paper describes a new transfer learning method for modeling sensor time series following multiple different distributions, e.g. originating from multiple different tool settings. The method aims at removing distr... 详细信息
来源: 评论