咨询与建议

限定检索结果

文献类型

  • 9 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 14 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 12 篇 计算机科学与技术...
    • 6 篇 控制科学与工程
    • 4 篇 电气工程
    • 1 篇 信息与通信工程
    • 1 篇 石油与天然气工程
    • 1 篇 软件工程
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 心理学(可授教育学...
  • 1 篇 理学
    • 1 篇 生物学
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...

主题

  • 14 篇 multi-task reinf...
  • 3 篇 reinforcement le...
  • 3 篇 transfer learnin...
  • 2 篇 task analysis
  • 2 篇 robotic manipula...
  • 2 篇 robots
  • 2 篇 q-learning
  • 2 篇 multitasking
  • 2 篇 meta-world
  • 2 篇 training
  • 1 篇 potential-based ...
  • 1 篇 catastrophic int...
  • 1 篇 markov decision ...
  • 1 篇 continual learni...
  • 1 篇 abstraction
  • 1 篇 actor-critic age...
  • 1 篇 task confusion
  • 1 篇 planning
  • 1 篇 videos
  • 1 篇 neural networks

机构

  • 1 篇 univ southern ca...
  • 1 篇 sun yat sen univ...
  • 1 篇 xidian univ sch ...
  • 1 篇 southeast univ s...
  • 1 篇 xi an jiao tong ...
  • 1 篇 beihang univ sta...
  • 1 篇 ruhr univ bochum...
  • 1 篇 google team goog...
  • 1 篇 southeast univ s...
  • 1 篇 univ amsterdam i...
  • 1 篇 huawei technol n...
  • 1 篇 xi an jiao tong ...
  • 1 篇 northwestern pol...
  • 1 篇 robot technol us...
  • 1 篇 columbia univ ny...
  • 1 篇 singapore univ t...
  • 1 篇 suny stony brook...
  • 1 篇 tianjin univ sch...
  • 1 篇 singapore univ t...
  • 1 篇 stanford univ st...

作者

  • 2 篇 levine sergey
  • 2 篇 hausman karol
  • 2 篇 bouffanais rolan...
  • 2 篇 finn chelsea
  • 2 篇 karimpanal thomm...
  • 1 篇 ji xinyuan
  • 1 篇 zhang lin
  • 1 篇 zhu yi-an
  • 1 篇 julian ryan
  • 1 篇 li yinchuan
  • 1 篇 zhang lixiang
  • 1 篇 chebotar yevgen
  • 1 篇 song wenfeng
  • 1 篇 zhong dong
  • 1 篇 bie zhaohong
  • 1 篇 wiskott laurenz
  • 1 篇 whiteson shimon
  • 1 篇 duan junhua
  • 1 篇 qian weimin
  • 1 篇 schiewer robin

语言

  • 14 篇 英文
检索条件"主题词=Multi-Task Reinforcement Learning"
14 条 记 录,以下是1-10 订阅
排序:
multi-task reinforcement learning Based on Parallel Recombination Networks
收藏 引用
IEEE ACCESS 2025年 13卷 80113-80122页
作者: Liu, Manlu Zhang, Qingbo Qian, Weimin Southwest Univ Sci & Technol Sch Informat Engn Mianyang 621010 Peoples R China Robot Technol Used Special Environm Key Lab Sichua Mianyang 621010 Peoples R China
multi-task reinforcement learning is a key current trend in the field of reinforcement learning. It can accomplish multiple tasks using a single network, which is superior to single-task learning in integrating inform... 详细信息
来源: 评论
multi-task reinforcement learning With Attention-Based Mixture of Experts
收藏 引用
IEEE ROBOTICS AND AUTOMATION LETTERS 2023年 第6期8卷 3811-3818页
作者: Cheng, Guangran Dong, Lu Cai, Wenzhe Sun, Changyin Southeast Univ Sch Automat Nanjing 210096 Peoples R China Southeast Univ Sch Cyber Sci & Engn Nanjing 211189 Peoples R China
multi-task learning is an important problem in reinforcement learning. Training multiple tasks together brings benefits from the shared useful information across different tasks and often achieves higher performance c... 详细信息
来源: 评论
multi-task reinforcement learning with Cost-based HTN Planning  5
Multi-Task Reinforcement Learning with Cost-based HTN Planni...
收藏 引用
5th International Conference on Computer Engineering and Application (ICCEA)
作者: Hu, Yuyong Zhuo, Hankz Hankui Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou Peoples R China
multi-task reinforcement learning (MT-RL) faces key challenges in accomplishing complex long-horizon tasks, particularly related to scarce rewards, inefficient sample usage, and low transferability. These challenges a... 详细信息
来源: 评论
Finite-Time Complexity of Incremental Policy Gradient Methods for Solving multi-task reinforcement learning  6
Finite-Time Complexity of Incremental Policy Gradient Method...
收藏 引用
6th Annual learning for Dynamics and Control Conference
作者: Bai, Yitao Doan, Thinh T. Virginia Tech Bradley Dept Elect & Comp Engn Blacksburg VA 24061 USA
We consider a multi-task learning problem, where an agent is presented a number of N reinforcement learning tasks. To solve this problem, we are interested in studying the gradient approach, which iteratively updates ... 详细信息
来源: 评论
Modular Networks Prevent Catastrophic Interference in Model-Based multi-task reinforcement learning  7th
Modular Networks Prevent Catastrophic Interference in Model-...
收藏 引用
7th International Conference on Machine learning, Optimization, and Data Science (LOD) / 1st Symposium on Artificial Intelligence and Neuroscience (ACAIN)
作者: Schiewer, Robin Wiskott, Laurenz Ruhr Univ Bochum Inst Neural Computat Bochum Germany
In a multi-task reinforcement learning setting, the learner commonly benefits from training on multiple related tasks by exploiting similarities among them. At the same time, the trained agent is able to solve a wider... 详细信息
来源: 评论
Scaling Up multi-task Robotic reinforcement learning  5
Scaling Up Multi-Task Robotic Reinforcement Learning
收藏 引用
5th Conference on Robot learning (CoRL)
作者: Kalashnikov, Dmitry Varley, Jake Chebotar, Yevgen Swanson, Benjamin Jonschkowski, Rico Finn, Chelsea Levine, Sergey Hausman, Karol Google Team Google Res Robot Mountain View CA 94043 USA
General-purpose robotic systems must master a large repertoire of diverse skills. While reinforcement learning provides a powerful framework for acquiring individual behaviors, the time needed to acquire each skill ma... 详细信息
来源: 评论
Particle swarm optimization based multi-task parallel reinforcement learning algorithm
收藏 引用
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019年 第6期37卷 8567-8575页
作者: Duan Junhua Zhu Yi-an Zhong Dong Zhang Lixiang Zhang Lin Northwestern Polytech Univ Sch Comp 127 West Youyi Rd Xian 710072 Shaanxi Peoples R China
Transfer learning has been identified as conducive to improving the speed of machine learning in many areas. In multi-task reinforcement learning, transfer learning can assist the transfer of experiences between diffe... 详细信息
来源: 评论
Meta-World: A Benchmark and Evaluation for multi-task and Meta reinforcement learning  3
Meta-World: A Benchmark and Evaluation for Multi-Task and Me...
收藏 引用
3rd Conference on Robot learning (CoRL)
作者: Yu, Tianhe Quillen, Deirdre He, Zhanpeng Julian, Ryan Hausman, Karol Finn, Chelsea Levine, Sergey Stanford Univ Stanford CA 94305 USA Univ Calif Berkeley Berkeley CA USA Columbia Univ New York NY 10027 USA Univ Southern Calif Los Angeles CA 90007 USA Google Robot Mountain View CA 94043 USA
Meta-reinforcement learning algorithms can enable robots to acquire new skills much more quickly, by leveraging prior experience to learn how to learn. However, much of the current research on meta-reinforcement learn... 详细信息
来源: 评论
learning potential functions and their representations for multi-task reinforcement learning
收藏 引用
AUTONOMOUS AGENTS AND multi-AGENT SYSTEMS 2014年 第4期28卷 637-681页
作者: Snel, Matthijs Whiteson, Shimon Univ Amsterdam Intelligent Syst Lab Amsterdam Amsterdam Netherlands
In multi-task learning, there are roughly two approaches to discovering representations. The first is to discover task relevant representations, i.e., those that compactly represent solutions to particular tasks. The ... 详细信息
来源: 评论
Coordinating multi-Energy Microgrids for Integrated Energy System Resilience: A multi-task learning Approach
收藏 引用
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY 2024年 第2期15卷 920-937页
作者: Wang, Yi Qiu, Dawei Sun, Xiaotian Bie, Zhaohong Strbac, Goran Imperial Coll London Dept Elect & Elect Engn London SW7 2AZ England Xi An Jiao Tong Univ Sch Elect Engn Xian 710049 Peoples R China
High-impact and low-probability events have occurred more frequently than before, which can seriously damage energy supply infrastructures. As localized small energy systems, multi-energy microgrids (MEMGs) can provid... 详细信息
来源: 评论