咨询与建议

限定检索结果

文献类型

  • 722 篇 期刊文献
  • 326 篇 会议
  • 11 篇 学位论文
  • 1 篇 资讯

馆藏范围

  • 1,060 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 999 篇 工学
    • 844 篇 计算机科学与技术...
    • 340 篇 电气工程
    • 105 篇 软件工程
    • 84 篇 信息与通信工程
    • 66 篇 控制科学与工程
    • 35 篇 生物医学工程(可授...
    • 20 篇 电子科学与技术(可...
    • 18 篇 机械工程
    • 18 篇 仪器科学与技术
    • 16 篇 测绘科学与技术
    • 11 篇 交通运输工程
    • 8 篇 环境科学与工程(可...
    • 7 篇 生物工程
    • 6 篇 土木工程
    • 4 篇 材料科学与工程(可...
  • 133 篇 理学
    • 49 篇 生物学
    • 40 篇 数学
    • 32 篇 物理学
    • 20 篇 统计学(可授理学、...
    • 13 篇 系统科学
    • 9 篇 化学
    • 9 篇 地球物理学
    • 7 篇 地理学
  • 113 篇 医学
    • 76 篇 临床医学
    • 35 篇 基础医学(可授医学...
    • 24 篇 特种医学
    • 4 篇 医学技术(可授医学...
  • 102 篇 管理学
    • 93 篇 管理科学与工程(可...
    • 6 篇 图书情报与档案管...
    • 4 篇 公共管理
  • 19 篇 农学
  • 2 篇 经济学
  • 2 篇 教育学
  • 2 篇 艺术学
  • 1 篇 哲学
  • 1 篇 法学
  • 1 篇 文学

主题

  • 1,060 篇 multi-view learn...
  • 82 篇 deep learning
  • 57 篇 semi-supervised ...
  • 53 篇 feature extracti...
  • 47 篇 classification
  • 44 篇 clustering
  • 39 篇 task analysis
  • 33 篇 representation l...
  • 31 篇 canonical correl...
  • 29 篇 feature selectio...
  • 26 篇 correlation
  • 24 篇 multi-label lear...
  • 24 篇 dimensionality r...
  • 24 篇 multi-task learn...
  • 24 篇 machine learning
  • 23 篇 data models
  • 23 篇 training
  • 22 篇 contrastive lear...
  • 22 篇 subspace learnin...
  • 21 篇 semi-supervised ...

机构

  • 28 篇 fuzhou univ coll...
  • 15 篇 univ elect sci &...
  • 15 篇 univ chinese aca...
  • 14 篇 chinese acad sci...
  • 14 篇 guangdong univ t...
  • 13 篇 chinese acad sci...
  • 11 篇 nanjing univ sci...
  • 11 篇 ningbo univ sch ...
  • 11 篇 fuzhou univ fuji...
  • 10 篇 univ chinese aca...
  • 10 篇 tianjin univ sch...
  • 9 篇 sichuan univ col...
  • 9 篇 sun yat sen univ...
  • 8 篇 east china norma...
  • 8 篇 e china normal u...
  • 8 篇 nanjing univ aer...
  • 8 篇 china agr univ c...
  • 8 篇 south china univ...
  • 8 篇 yantai univ sch ...
  • 7 篇 chinese acad sci...

作者

  • 30 篇 sun shiliang
  • 29 篇 wang shiping
  • 16 篇 tian yingjie
  • 14 篇 xie xijiong
  • 14 篇 he jingrui
  • 12 篇 wang zhe
  • 12 篇 yu philip s.
  • 11 篇 liu bo
  • 11 篇 xiao yanshan
  • 10 篇 xu zenglin
  • 10 篇 wu zhihao
  • 10 篇 yuan yun-hao
  • 10 篇 tang jingjing
  • 9 篇 tao dacheng
  • 9 篇 huang shudong
  • 9 篇 guo wenzhong
  • 9 篇 du shide
  • 8 篇 liu an-an
  • 8 篇 yang yang
  • 8 篇 kaski samuel

语言

  • 1,051 篇 英文
  • 7 篇 其他
  • 2 篇 中文
  • 1 篇 法文
检索条件"主题词=Multi-View Learning"
1060 条 记 录,以下是1-10 订阅
排序:
multi-view learning with enhanced multi-weight vector projection support vector machine
收藏 引用
NEURAL NETWORKS 2025年 185卷 107180页
作者: Yan, Xin Wang, Shuaixing Chen, Huina Zhu, Hongmiao Shanghai Univ Int Business & Econ Sch Stat & Informat Shanghai 201620 Peoples R China Shanghai Univ Int Business & Econ Sch Management Shanghai 201620 Peoples R China
multi-view learning aims on learning from the data represented by multiple distinct feature sets. Various multi-view support vector machine methods have been successfully applied to classification tasks. However, the ... 详细信息
来源: 评论
multi-view learning based on product and process metrics for software defect prediction
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-20页
作者: Sun, Ying Wu, Fei Wu, Di Jing, Xiao-Yuan Sun, Yanfei Nanjing Univ Posts & Telecommun Sch Comp Sci Nanjing 210023 Peoples R China NanJing Pharmaceut Co Ltd Digital Innovat Dept Nanjing 210012 Peoples R China Nanjing Univ Posts & Telecommun Sch Automat Nanjing 210023 Peoples R China Nanjing Univ Posts & Telecommun Sch Internet Things Nanjing 210003 Peoples R China Nanjing Univ Posts & Telecommun Jiangsu Engn Res Ctr HPC & Intelligent Proc Nanjing 210003 Peoples R China Wuhan Univ Sch Comp Sci Wuhan 430072 Peoples R China
Software defect prediction plays a crucial role as a quality assurance technology in software development. The software metrics are associated with the software quality and are vital for prediction models. Most existi... 详细信息
来源: 评论
multi-view learning for camouflaged object detection with PVTv2
收藏 引用
INTERNATIONAL JOURNAL OF multiMEDIA INFORMATION RETRIEVAL 2025年 第2期14卷 1-11页
作者: Yan, Pu Ruan, Kang Wang, Lili Zhao, Yang Wang, Xu Anhui Jianzhu Univ Sch Elect & Informat Engn Hefei 230601 Anhui Peoples R China
Recently, with the continuous development in the field of camouflaged object detection (COD), effectively separating objects highly similar to the background has become a focal point of research. Due to the high simil... 详细信息
来源: 评论
Missing data as augmentation in the Earth Observation domain: A multi-view learning approach
收藏 引用
NEUROCOMPUTING 2025年 638卷
作者: Mena, Francisco Arenas, Diego Dengel, Andreas Univ Kaiserslautern Landau Comp Sci Gottlieb Daimler Str D-67663 Kaiserslautern Germany German Res Ctr Artificial Intelligence SDS Trippstadter Str 122 D-67663 Kaiserslautern Germany
multi-view learning (MVL) leverages multiple sources or views of data to enhance machine learning performance and robustness. This approach has been successfully used in the Earth Observation (EO) domain, where views ... 详细信息
来源: 评论
Consensus and diversity-fusion partial-view-shared multi-view learning
收藏 引用
NEUROCOMPUTING 2025年 611卷
作者: Teng, Luyao Zheng, Zefeng Guangzhou Panyu Polytech Sch Informat Engn Guangzhou 511483 Peoples R China Guangdong Univ Technol Sch Comp Sci & Technol Guangzhou 510006 Peoples R China
Due to the multi-perspective of data, multi-view learning (MVL) is usually employed. Although existing MVL approaches gain fruitful achievements, they may neglect to learn (a) partial-view-shared knowledge between vie... 详细信息
来源: 评论
A review on multi-view learning
收藏 引用
FRONTIERS OF COMPUTER SCIENCE 2025年 第7期19卷 197334-197334页
作者: Yu, Zhiwen Dong, Ziyang Yu, Chenchen Yang, Kaixiang Fan, Ziwei Chen, C. L. Philip South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Pengcheng Lab Shenzhen 518066 Peoples R China
multi-view learning is an emerging field that aims to enhance learning performance by leveraging multiple views or sources of data across various domains. By integrating information from diverse perspectives, multi-vi... 详细信息
来源: 评论
multi-scale graph diffusion convolutional network for multi-view learning
收藏 引用
ARTIFICIAL INTELLIGENCE REview 2025年 第6期58卷 1-23页
作者: Wang, Shiping Li, Jiacheng Chen, Yuhong Wu, Zhihao Huang, Aiping Zhang, Le Fuzhou Univ Coll Comp & Data Sci Fuzhou 350116 Peoples R China Univ Elect Sci & Technol China Sch Informat & Commun Engn Chengdu 610054 Peoples R China
multi-view learning has attracted considerable attention owing to its capability to learn more comprehensive representations. Although graph convolutional networks have achieved encouraging results in multi-view resea... 详细信息
来源: 评论
Trust EEG epileptic seizure detection via evidential multi-view learning
收藏 引用
INFORMATION SCIENCES 2025年 694卷
作者: Liu, Ying Xu, Cai Wen, Ziqi Dong, Yansong Xidian Univ Sch Comp Sci & Technol Xian 710071 Peoples R China Beijing Sunwise Informat Technol Ltd Beijing 100190 Peoples R China
Epilepsy is one of the most common neurological disease in the world. Researchers focus on automatic electroencephalogram (EEG) seizure detection methods and achieve remarkable detection accuracy. However, there still... 详细信息
来源: 评论
TSCMamba: Mamba meets multi-view learning for time series classification
收藏 引用
INFORMATION FUSION 2025年 120卷 103079页
作者: Ahamed, Atik Cheng, Qiang Univ Kentucky Dept Comp Sci Lexington KY 40506 USA Univ Kentucky Inst Biomed Informat Lexington KY 40506 USA
multivariate time series classification (TSC) is critical for various applications in fields such as healthcare and finance. While various approaches for TSC have been explored, important properties of time series, su... 详细信息
来源: 评论
An integrating multidimensional features method based on multi-view learning for intelligent fault diagnosis of rolling bearings
收藏 引用
ENGINEERING COMPUTATIONS 2025年 第4期42卷 1502-1524页
作者: Wang, Min Liu, Weixia Ning, Jida Yu, Shihang Tang, Shikai Li, Jiaqi Tiangong Univ Sch Life Sci Tianjin Peoples R China Tiangong Univ Sch Control Sci & Engn Tianjin Peoples R China Unit 32372 Peoples Liberat Army Beijing Peoples R China Qingdao Univ Technol Sch Informat & Control Engn Qingdao Peoples R China
PurposeThe purpose of this study is to improve the accuracy and generalization ability of intelligent fault diagnosis models for rolling bearings under varying operating conditions. By integrating multidimensional fea... 详细信息
来源: 评论