咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 17 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 45 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 5 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 水利工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 5 篇 生物学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 临床医学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
  • 3 篇 农学
    • 1 篇 作物学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 57 篇 multi-instance m...
  • 8 篇 machine learning
  • 7 篇 protein function...
  • 4 篇 neural networks
  • 4 篇 scene classifica...
  • 3 篇 text categorizat...
  • 3 篇 ensemble learnin...
  • 3 篇 deep learning
  • 3 篇 radial basis fun...
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 model interpreta...
  • 2 篇 sequence-level
  • 2 篇 multi-label lear...
  • 2 篇 task analysis
  • 2 篇 breast histopath...
  • 2 篇 genome wide
  • 2 篇 image annotation
  • 2 篇 brain ct
  • 2 篇 label correlatio...

机构

  • 5 篇 nanjing univ nat...
  • 4 篇 shandong inst bu...
  • 3 篇 nanjing univ sta...
  • 3 篇 ludong univ sch ...
  • 2 篇 south china univ...
  • 2 篇 shandong univ sc...
  • 2 篇 beijing inst tec...
  • 2 篇 china univ petr ...
  • 2 篇 nanjing univ pos...
  • 2 篇 peng cheng lab p...
  • 2 篇 dalian univ tech...
  • 1 篇 univ sci & techn...
  • 1 篇 nanjing univ sof...
  • 1 篇 south china univ...
  • 1 篇 southwest petr u...
  • 1 篇 hong kong polyte...
  • 1 篇 univ salford sch...
  • 1 篇 univ aizu comp s...
  • 1 篇 georgia inst tec...
  • 1 篇 nanjing univ pos...

作者

  • 5 篇 zhou zhi-hua
  • 4 篇 huang sheng-jun
  • 3 篇 wu qingyao
  • 2 篇 shi guoqiang
  • 2 篇 chen tongtong
  • 2 篇 liu ying
  • 2 篇 yang yang
  • 2 篇 ding xinmiao
  • 2 篇 gu hong
  • 2 篇 liu chan-juan
  • 2 篇 xu xinshun
  • 2 篇 he jianjun
  • 2 篇 min huaqing
  • 2 篇 raich raviv
  • 2 篇 zou hailin
  • 2 篇 li yunjie
  • 2 篇 liu chanjuan
  • 2 篇 chen tong-tong
  • 2 篇 pan zesi
  • 2 篇 wang zhelong

语言

  • 56 篇 英文
  • 1 篇 中文
检索条件"主题词=Multi-instance Multi-label Learning"
57 条 记 录,以下是1-10 订阅
排序:
Abductive multi-instance multi-label learning for periodontal disease classification with prior domain knowledge
收藏 引用
MEDICAL IMAGE ANALYSIS 2025年 101卷 103452页
作者: Wu, Zi-Yuan Guo, Wei Zhou, Wei Ye, Han-Jia Jiang, Yuan Li, Houxuan Zhou, Zhi-Hua Nanjing Univ Natl Key Lab Novel Software Technol Nanjing 210023 Peoples R China Nanjing Univ Sch Artificial Intelligence Nanjing 210023 Peoples R China Nanjing Univ Affiliated Hosp Nanjing Stomatol Hosp Med SchRes Inst Stomatol Nanjing 210008 Peoples R China
Machine learning is widely used in dentistry nowadays, offering efficient solutions for diagnosing dental diseases, such as periodontitis and gingivitis. Most existing methods for diagnosing periodontal diseases follo... 详细信息
来源: 评论
Imbalanced multi-instance multi-label learning via tensor product-based semantic fusion
收藏 引用
FRONTIERS OF COMPUTER SCIENCE 2025年 第8期19卷 1-12页
作者: Zhang, Xinyue Luo, Tingjin Natl Univ Def Technol Coll Sci Changsha 410073 Peoples R China
With powerful expressiveness of multi-instance multi-label learning (MIML) for objects with multiple semantics and its great flexibility for complex object structures, MIML has been widely applied to various applicati... 详细信息
来源: 评论
multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation
收藏 引用
INFORMATION SCIENCES 2012年 190卷 162-177页
作者: He, Jianjun Gu, Hong Wang, Zhelong Dalian Univ Technol Fac Elect Informat & Elect Engn Dalian 116024 Liaoning Peoples R China
Classification problems have been frequently encountered in visual mobile robot navigation. The studies reported so far are mainly focused on the single label problem;i.e., each sample (datum) is assigned to a single ... 详细信息
来源: 评论
multi-instance multi-label learning
收藏 引用
ARTIFICIAL INTELLIGENCE 2012年 第1期176卷 2291-2320页
作者: Zhou, Zhi-Hua Zhang, Min-Ling Huang, Sheng-Jun Li, Yu-Feng Nanjing Univ Natl Key Lab Novel Software Technol Nanjing 210046 Jiangsu Peoples R China
In this paper, we propose the MIML (multi-instance multi-label learning) framework where an example is described by multiple instances and associated with multiple class labels. Compared to traditional learning framew... 详细信息
来源: 评论
multi-instance multi-label learning Based on Parallel Attention and Local label Manifold Correlation  9
Multi-instance Multi-label Learning Based on Parallel Attent...
收藏 引用
9th IEEE International Conference on Data Science and Advanced Analytics (DSAA)
作者: Yang, Mei Tang, Wen-Tao Min, Fan Southwest Petr Univ Sch Comp Sci Chengdu Peoples R China Southwest Petr Univ Sch Comp Sci Inst Artificial Intelligence Chengdu Peoples R China
Real-world applications always contain complex data objects with multiple semantics. The machine learning tasks generalized from these applications can be formulated as multiinstance multi-label learning (MIML) proble... 详细信息
来源: 评论
multi-instance multi-label learning for Image Categorization Based on Integrated Contextual Information  9th
Multi-instance Multi-label Learning for Image Categorization...
收藏 引用
9th International Conference on Image and Graphics (ICIG)
作者: Li, Xingyue Wan, Shouhong Zou, Chang Yin, Bangjie Univ Sci & Technol China Sch Comp Sci & Technol Hefei 230027 Peoples R China Chinese Acad Sci Key Lab Electromagnet Space Informat Hefei 230027 Peoples R China
In image categorization, one image is usually reshaped as a bag of instances affiliated with multiple labels, which naturally induces a paradigm of multi-instance and multi-label learning (MIMLL). Previous researches ... 详细信息
来源: 评论
multi-instance multi-label learning for whole slide breast histopathology  4
Multi-instance multi-label learning for whole slide breast h...
收藏 引用
Conference on Medical Imaging - Digital Pathology
作者: Mercan, Caner Mercan, Ezgi Aksoy, Selim Shapiro, Linda G. Weaver, Donald L. Elmore, Joann G. Bilkent Univ Dept Comp Engn TR-06800 Ankara Turkey Univ Washington Dept Comp Sci & Engn Seattle WA 98195 USA Univ Vermont Dept Pathol Burlington VT 05405 USA Univ Washington Dept Med Seattle WA 98195 USA
Digitization of full biopsy slides using the whole slide imaging technology has provided new opportunities for understanding the diagnostic process of pathologists and developing more accurate computer aided diagnosis... 详细信息
来源: 评论
A New multi-instance multi-label learning approach for image and text classification
收藏 引用
multiMEDIA TOOLS AND APPLICATIONS 2016年 第13期75卷 7875-7890页
作者: Yan, Kaobi Li, Zhixin Zhang, Canlong Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur Guilin 541004 Peoples R China Guangxi Expt Ctr Informat Sci Guilin 541004 Peoples R China
Recently, a reasonable and effectively framework to deal with the classification problem of the polysemy object with complex connotation is multi-instance multi-label (MIML) learning framework in which each example is... 详细信息
来源: 评论
A multi-instance multi-label learning algorithm based on instance correlations
收藏 引用
multiMEDIA TOOLS AND APPLICATIONS 2016年 第19期75卷 12263-12284页
作者: Liu, Chanjuan Chen, Tongtong Ding, Xinmiao Zou, Hailin Tong, Yan Ludong Univ Sch Informat & Elect Engn Yantai 264025 Peoples R China Univ South Carolina Dept Comp Sci & Engn Columbia SC 29208 USA Shandong Inst Business & Technol Sch Informat & Elect Engn Yantai 264005 Peoples R China
Existing multi-instance multi-label learning algorithms generally assume that instances in a bag are independent of each other, which is difficult to be guaranteed in practical applications. A novel multi-instance mul... 详细信息
来源: 评论
MIML-GAN: A GAN-Based Algorithm for multi-instance multi-label learning on Overlapping Signal Waveform Recognition
收藏 引用
IEEE TRANSACTIONS ON SIGNAL PROCESSING 2023年 71卷 859-872页
作者: Pan, Zesi Wang, Bo Zhang, Ruibin Wang, Shafei Li, Yunjie Li, Yan Beijing Inst Technol Sch Informat & Elect Beijing 100081 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China Univ Int Business & Econ Sch Informat Technol & Management Beijing 100029 Peoples R China Beijing Inst Technol Sch Cyberspace Sci & Technol Beijing 100081 Peoples R China
Existing studies for automatic waveform recognition of overlapping signals have mostly been conducted in a supervised manner. Although demonstrating superior performance in recent years, supervised methods rely heavil... 详细信息
来源: 评论