咨询与建议

限定检索结果

文献类型

  • 39 篇 期刊文献
  • 17 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 57 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 52 篇 工学
    • 45 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 5 篇 软件工程
    • 2 篇 控制科学与工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 水利工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 生物医学工程(可授...
    • 1 篇 生物工程
  • 7 篇 理学
    • 5 篇 生物学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 统计学(可授理学、...
  • 5 篇 医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 特种医学
    • 1 篇 临床医学
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
  • 3 篇 农学
    • 1 篇 作物学
  • 1 篇 教育学
    • 1 篇 教育学

主题

  • 57 篇 multi-instance m...
  • 8 篇 machine learning
  • 7 篇 protein function...
  • 4 篇 neural networks
  • 4 篇 scene classifica...
  • 3 篇 text categorizat...
  • 3 篇 ensemble learnin...
  • 3 篇 deep learning
  • 3 篇 radial basis fun...
  • 3 篇 feature extracti...
  • 3 篇 training
  • 2 篇 model interpreta...
  • 2 篇 sequence-level
  • 2 篇 multi-label lear...
  • 2 篇 task analysis
  • 2 篇 breast histopath...
  • 2 篇 genome wide
  • 2 篇 image annotation
  • 2 篇 brain ct
  • 2 篇 label correlatio...

机构

  • 5 篇 nanjing univ nat...
  • 4 篇 shandong inst bu...
  • 3 篇 nanjing univ sta...
  • 3 篇 ludong univ sch ...
  • 2 篇 south china univ...
  • 2 篇 shandong univ sc...
  • 2 篇 beijing inst tec...
  • 2 篇 china univ petr ...
  • 2 篇 nanjing univ pos...
  • 2 篇 peng cheng lab p...
  • 2 篇 dalian univ tech...
  • 1 篇 univ sci & techn...
  • 1 篇 nanjing univ sof...
  • 1 篇 south china univ...
  • 1 篇 southwest petr u...
  • 1 篇 hong kong polyte...
  • 1 篇 univ salford sch...
  • 1 篇 univ aizu comp s...
  • 1 篇 georgia inst tec...
  • 1 篇 nanjing univ pos...

作者

  • 5 篇 zhou zhi-hua
  • 4 篇 huang sheng-jun
  • 3 篇 wu qingyao
  • 2 篇 shi guoqiang
  • 2 篇 chen tongtong
  • 2 篇 liu ying
  • 2 篇 yang yang
  • 2 篇 ding xinmiao
  • 2 篇 gu hong
  • 2 篇 liu chan-juan
  • 2 篇 xu xinshun
  • 2 篇 he jianjun
  • 2 篇 min huaqing
  • 2 篇 raich raviv
  • 2 篇 zou hailin
  • 2 篇 li yunjie
  • 2 篇 liu chanjuan
  • 2 篇 chen tong-tong
  • 2 篇 pan zesi
  • 2 篇 wang zhelong

语言

  • 56 篇 英文
  • 1 篇 中文
检索条件"主题词=Multi-instance Multi-label Learning"
57 条 记 录,以下是21-30 订阅
排序:
An improved multi-instance multi-label learning algorithm based on representative instances selection and label correlations
收藏 引用
INTERNATIONAL JOURNAL OF GRID AND UTILITY COMPUTING 2018年 第3期9卷 268-277页
作者: Liu, Chanjuan Chen, Tongtong Zou, Hailin Ding, Xinmiao Wang, Yuling Ludong Univ Sch Informat & Elect Engn Prov Key Lab Cyber Phys Syst & Intelligent Contro Yantai 264025 Peoples R China Shandong Inst Business & Technol Sch Informat & Elect Engn Yantai 264005 Peoples R China Shandong Jianzhu Univ Dept Informat & Elect Engn Jinan 250101 Shandong Peoples R China
multi-instance multi-label learning (MIML) has been successfully used in image and text classification problems. It is noteworthy that few of the previous studies consider the pattern-label relations. Inevitably, ther... 详细信息
来源: 评论
MIMLTWSVM: Twin Support Vector Machine for multi-instance multi-label learning  11
MIMLTWSVM: Twin Support Vector Machine for Multi-Instance Mu...
收藏 引用
11th International Conference on Industrial and Information Systems (ICIIS)
作者: Tomar, Divya Agarwal, Sonali Indian Inst Informat Technol Allahabad Uttar Pradesh India
Recently, multi instance multi label (MIML) learning has attracted the attention of researchers in which an example not only belongs to multiple instances but also associated with multiple class labels. This study pro... 详细信息
来源: 评论
Selecting Suitable Image Retargeting Methods with multi-instance multi-label learning
Selecting Suitable Image Retargeting Methods with Multi-inst...
收藏 引用
International Conference on Brain and Health Informatics (BHI)
作者: Song, Muyang Ren, Tongwei Liu, Yan Bei, Jia Zhao, Zhihong Nanjing Univ Software Inst Nanjing Jiangsu Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China Hong Kong Polytech Univ Dept Comp Hong Kong Hong Kong Peoples R China
Althogh the diversity of mobile devices brings in image retargeting technique to effectively display images on various screens, no existing image retargeting method can handle all images well. In this paper, we propos... 详细信息
来源: 评论
A multi-instance multi-label learning Algorithm Based on Feature Selection  10
A Multi-instance Multi-label Learning Algorithm Based on Fea...
收藏 引用
10th International Conference on Broadband and Wireless Computing, Communication and Applications
作者: Chen Tong-tong Liu Chan-juan Zou Hai-lin Shen Qian Liu Ying Ding Xin-miao Ludong Univ Sch Informat & Elect Engn Yantai Peoples R China Shandong Inst Business & Technol Sch Informat & Elect Engn Yantai Peoples R China
multi-instance multi-label learning is an extension of multi-instance learning for multi-label classification. In order to select typical instances with high discrimination for multiple labels, the feature selection v... 详细信息
来源: 评论
HMIML: Hierarchical multi-instance multi-label learning of Drosophila Embryogenesis Images Using Convolutional Neural Networks
HMIML: Hierarchical Multi-Instance Multi-Label Learning of <...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM) - Human Genomics
作者: Li, Tiange Yang, Yang Shen, Hong-Bin Shanghai Jiao Tong Univ Dept Comp Sci & Engn Shanghai 200240 Peoples R China Key Lab Shanghai Educ Commiss Intelligent Interac Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ Inst Image Proc & Pattern Recognit Shanghai 200240 Peoples R China Minist Educ China Key Lab Syst Control & Informat Proc Shanghai 200240 Peoples R China
The Drosophila embryonic gene expression images provide important spatio-temporal expression information for understanding the mechanisms of Drosophila embryogenesis. Automatic annotation of these images is an imperat... 详细信息
来源: 评论
DEEP FEATURE REPRESENTATIONS AND multi-instance multi-label learning OF WHOLE SLIDE BREAST HISTOPATHOLOGY IMAGES
DEEP FEATURE REPRESENTATIONS AND MULTI-INSTANCE MULTI-LABEL ...
收藏 引用
作者: Caner Mercan Bilkent University
学位级别:博士
The examination of a tissue sample has traditionally involved a pathologist investigating the case under a microscope. Whole slide imaging technology has recently been utilized for the digitization of biopsy slides, r... 详细信息
来源: 评论
Deep multi-instance multi-label learning for Image Annotation
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2018年 第3期32卷 1859005-1859005页
作者: Guo, Hai-Feng Han, Lixin Su, Shoubao Sun, Zhou-Bao Hohai Univ Coll Comp & Informat Nanjing 210024 Jiangsu Peoples R China Jinling Inst Technol Sch Comp Engn Nanjing 211169 Jiangsu Peoples R China Nanjing Univ State Key Lab Novel Software Technol Nanjing 210093 Jiangsu Peoples R China Nanjing Audit Univ Nanjing 211815 Jiangsu Peoples R China
multi-instance multi-label learning (MIML) is a popular framework for supervised classification where an example is described by multiple instances and associated with multiple labels. Previous MIML approaches have fo... 详细信息
来源: 评论
Hierarchical multi-instance multi-label learning for Chinese patent text classification
收藏 引用
CONNECTION SCIENCE 2024年 第1期36卷
作者: Liu, Yunduo Xu, Fang Zhao, Yushan Ma, Zichen Wang, Tengke Zhang, Shunxiang Tian, Yuhao Anhui Univ Sci & Technol Sch Comp Sci & Engn Huainan Peoples R China Hefei Comprehens Natl Sci Ctr Inst Artificial Intelligence Hefei Peoples R China Anhui Univ Sci & Technol Sch Foreign Languages Huainan Peoples R China Anhui Univ Sci & Technol Sch Math & Big Data Huainan Peoples R China Macau Univ Sci & Technol Fac Innovat Engn Macau Peoples R China
To further enhance the accuracy of the Chinese patent classification, this paper proposes a model, based on the patent structure and takes the patent claim as subjects, with multi-instance multi-label learning as the ... 详细信息
来源: 评论
A FRAMEWORK OF HASHING FOR multi-instance multi-label learning
收藏 引用
INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL 2015年 第3期11卷 921-934页
作者: Liu, Man Xu, Xinshun Shandong Univ Sch Comp Sci & Technol 1500 Shunhua Rd Jinan 250101 Shandong Peoples R China
multi-instance multi-label learning (MIML) is a powerful framework, which deals with the problem that each example is represented as multiple instances and associated with multiple class labels. Previous works mostly ... 详细信息
来源: 评论
Predicting the function of rice proteins through multi-instance multi-label learning based on multiple features fusion
收藏 引用
BRIEFINGS IN BIOINFORMATICS 2022年 第3期23卷 bbac095-bbac095页
作者: Liu, Jing Tang, Xinghua Cui, Shuanglong Guan, Xiao Shanghai Maritime Univ Informat Engn Coll Shanghai 201306 Peoples R China Univ Shanghai Sci & Technol Sch Hlth Sci & Engn Shanghai 200093 Peoples R China
There are a large number of unannotated proteins with unknown functions in rice, which are difficult to be verified by biological experiments. Therefore, computational method is one of the mainstream methods for rice ... 详细信息
来源: 评论