咨询与建议

限定检索结果

文献类型

  • 25 篇 期刊文献
  • 8 篇 会议

馆藏范围

  • 33 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 33 篇 工学
    • 30 篇 计算机科学与技术...
    • 16 篇 电气工程
    • 13 篇 软件工程
    • 4 篇 信息与通信工程
    • 3 篇 控制科学与工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 机械工程
    • 1 篇 生物医学工程(可授...
  • 4 篇 理学
    • 2 篇 物理学
    • 1 篇 数学
    • 1 篇 生物学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 农学

主题

  • 33 篇 multi-label imag...
  • 6 篇 task analysis
  • 5 篇 semantics
  • 5 篇 correlation
  • 4 篇 label correlatio...
  • 4 篇 image recognitio...
  • 4 篇 graph convolutio...
  • 3 篇 transformer
  • 3 篇 graph convolutio...
  • 2 篇 deep learning
  • 2 篇 graph convolutio...
  • 2 篇 partial label le...
  • 2 篇 transformers
  • 2 篇 differential pri...
  • 2 篇 feature extracti...
  • 2 篇 multi-scale
  • 2 篇 cnns
  • 2 篇 robustness
  • 2 篇 training
  • 2 篇 convolutional ne...

机构

  • 3 篇 sun yat sen univ...
  • 3 篇 megvii technol m...
  • 3 篇 guangdong univ t...
  • 2 篇 guangzhou univ s...
  • 2 篇 peking univ sch ...
  • 2 篇 south china norm...
  • 2 篇 nanjing univ nat...
  • 2 篇 huazhong univ sc...
  • 1 篇 southwest jiaoto...
  • 1 篇 sci & technol in...
  • 1 篇 zhejiang univers...
  • 1 篇 peking univ qing...
  • 1 篇 taiyuan univ tec...
  • 1 篇 guangdong univ t...
  • 1 篇 china univ min &...
  • 1 篇 shenzhen inst ar...
  • 1 篇 hefei univ techn...
  • 1 篇 univ manitoba de...
  • 1 篇 harbin inst tech...
  • 1 篇 beijing jiaotong...

作者

  • 5 篇 lin liang
  • 5 篇 chen tianshui
  • 4 篇 xie yanzhao
  • 4 篇 wang yangtao
  • 4 篇 pu tao
  • 3 篇 yang zhijing
  • 3 篇 chen zhao-min
  • 3 篇 liu yu
  • 2 篇 cui quan
  • 2 篇 jin xin
  • 2 篇 guo yanwen
  • 2 篇 liu jie
  • 2 篇 fan lisheng
  • 2 篇 shi yukai
  • 2 篇 zhou ke
  • 2 篇 wu hefeng
  • 2 篇 wei xiu-shen
  • 1 篇 huang si-heng
  • 1 篇 chun-mei feng
  • 1 篇 tian ling

语言

  • 33 篇 英文
检索条件"主题词=Multi-label Image Recognition"
33 条 记 录,以下是1-10 订阅
排序:
multi-label image recognition with attentive transformer-localizer module
收藏 引用
multiMEDIA TOOLS AND APPLICATIONS 2022年 第6期81卷 7917-7940页
作者: Nie, Lin Chen, Tianshui Wang, Zhouxia Kang, Wenxiong Lin, Liang South China Univ Technol Wushan Campus 381 Wushan Rd Guangzhou Guangdong Peoples R China Guangdong Univ Technol Higher Educ Mega Ctr 100 WaiHuan West Rd Guangzhou Peoples R China Univ Hong Kong Hong Kong Peoples R China Sun Yat Sen Univ Higher Educ Mega Ctr 137 WaiHuan East Rd Guangzhou Guangdong Peoples R China
Recently, remarkable progress on multi-label image classification has been achieved by locating semantic-agnostic image regions and extracting their features with deep convolutional neural networks. However, existing ... 详细信息
来源: 评论
Semantic-Aware Graph Matching Mechanism for multi-label image recognition
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2023年 第11期33卷 6788-6803页
作者: Wu, Yanan Feng, Songhe Wang, Yang Beijing Jiaotong Univ Minist Educ Key Lab Big Data & Artificial Intelligence Transp Beijing 100044 Peoples R China Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing 100044 Peoples R China Univ Manitoba Dept Comp Sci Winnipeg MB R3T 2N2 Canada
multi-label image recognition aims to predict a set of labels that present in an image. The key to deal with such problem is to mine the associations between image contents and labels, and further obtain the correct a... 详细信息
来源: 评论
A multi-label image recognition Algorithm Based on Spatial and Semantic Correlation Interaction  6th
A Multi-label Image Recognition Algorithm Based on Spatial a...
收藏 引用
6th Chinese Conference on Pattern recognition and Computer Vision (PRCV)
作者: Cheng, Jing Ji, Genlin Yang, Qinkai Hao, Junzhao Nanjing Normal Univ Sch Artificial Intelligence Sch Comp & Elect Informat Nanjing Peoples R China
multi-label image recognition (MLIR) approaches usually exploit label correlations to achieve good performance. Two types of label correlations principally studied, i.e., the spatial and semantic correlations. However... 详细信息
来源: 评论
A multi-scale semantic attention representation for multi-label image recognition with graph networks
收藏 引用
NEUROCOMPUTING 2022年 491卷 14-23页
作者: Liang, Jun Xu, Feiteng Yu, Songsen South China Normal Univ Sch Software Foshan 528225 Peoples R China
multi-label image recognition is a basic and challenging task in computer vision and multimedia fields. Graph Convolutional Networks (GCNs) are often used to learn the multi-label semantic features and multi-label dep... 详细信息
来源: 评论
STMG: Swin transformer for multi-label image recognition with graph convolution network
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第12期34卷 10051-10063页
作者: Wang, Yangtao Xie, Yanzhao Fan, Lisheng Hu, Guangxing Guangzhou Univ Sch Comp Sci & Cyber Engn Guangzhou Peoples R China Huazhong Univ Sci & Technol Wuhan Peoples R China
Vision Transformer (ViT) has achieved promising single-label image classification results compared to conventional neural network-based models. Nevertheless, few ViT related studies have explored the label dependencie... 详细信息
来源: 评论
SST: Spatial and Semantic Transformers for multi-label image recognition
收藏 引用
IEEE TRANSACTIONS ON image PROCESSING 2022年 31卷 2570-2583页
作者: Chen, Zhao-Min Cui, Quan Zhao, Borui Song, Renjie Zhang, Xiaoqin Yoshie, Osamu Wenzhou Univ Coll Comp Sci & Artificial Intelligence Wenzhou 325035 Peoples R China Waseda Univ Grad Sch Informat Prod & Syst Fukuoka 8080135 Japan Megvii Technol Megvii Res Nanjing Nanjing 210009 Peoples R China
multi-label image recognition has attracted considerable research attention and achieved great success in recent years. Capturing label correlations is an effective manner to advance the performance of multi-label ima... 详细信息
来源: 评论
label graph learning for multi-label image recognition with cross-modal fusion
收藏 引用
multiMEDIA TOOLS AND APPLICATIONS 2022年 第18期81卷 25363-25381页
作者: Xie, Yanzhao Wang, Yangtao Liu, Yu Zhou, Ke Huazhong Univ Sci & Technol Wuhan Natl Lab Optoelect 1037 Luoyu Rd Wuhan Peoples R China Guangzhou Univ Sch Comp Sci & Cyber Engn 230 Wai Huan Xi Rd Guangzhou Peoples R China
It has become popular to learn the correlation between labels in most existing multi-label image recognition tasks. Existing approaches begin to construct a label graph to learn the label dependencies but they suffer ... 详细信息
来源: 评论
SMART: Semantic-Aware Masked Attention Relational Transformer for multi-label image recognition
收藏 引用
IEEE SIGNAL PROCESSING LETTERS 2022年 29卷 2158-2162页
作者: Wu, Hongjun Xu, Cheng Liu, Hongzhe Beijing Union Univ Beijing Key Lab Informat Serv Engn Beijing 100101 Peoples R China
As objects usually co-exist in an image, learning the label co-occurrence is a compelling approach to improving the performance of multi-label image recognition. However, the dependencies among the non-exist categorie... 详细信息
来源: 评论
Dual-perspective semantic-aware representation blending for multi-label image recognition with partial labels
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2024年 第PartA期249卷
作者: Pu, Tao Chen, Tianshui Wu, Hefeng Shi, Yukai Yang, Zhijing Lin, Liang Sun Yat sen Univ Sch Comp Sci & Engn Guangzhou 510006 Guangdong Peoples R China Guangdong Univ Technol Sch Informat Engn Guangzhou 510006 Guangdong Peoples R China
Recently, multi -label image recognition with partial labels (MLR -PL) has attracted increasing attention, in which only some labels are known while others are unknown for each image. However, current algorithms rely ... 详细信息
来源: 评论
Disentangling, Embedding and Ranking label Cues for multi-label image recognition
收藏 引用
IEEE TRANSACTIONS ON multiMEDIA 2021年 23卷 1827-1840页
作者: Chen, Zhao-Min Cui, Quan Wei, Xiu-Shen Jin, Xin Guo, Yanwen Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Peoples R China Waseda Univ Grad Sch Informat Prod & Syst Tokyo 1698050 Japan Nanjing Univ Sci & Technol Sch Comp Sci & Engn Key Lab Intelligent Percept & Syst High Dimens In PCA LabMinist Educ Nanjing 210094 Peoples R China Nanjing Univ Sci & Technol Sch Comp Sci & Engn Jiangsu Key Lab Image & Video Understanding Socia Nanjing 210094 Peoples R China Megvii Technol Megvii Res Nanjing Nanjing 210000 Peoples R China Nanjing Lanzhong Intelligent Technol Co Ltd Nanjing 210018 Peoples R China
multi-label image recognition is a fundamental but challenging computer vision and multimedia task. Great progress has been achieved by exploiting label correlations among these multiple labels associated with a singl... 详细信息
来源: 评论