咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 计算机科学与技术...
    • 1 篇 软件工程

主题

  • 1 篇 video anomaly de...
  • 1 篇 multi-modal larg...
  • 1 篇 training-free

机构

  • 1 篇 state key labora...
  • 1 篇 school of artifi...
  • 1 篇 beijing jiaotong...

作者

  • 1 篇 huang linlin
  • 1 篇 yang peipei
  • 1 篇 gao shibo

语言

  • 1 篇 英文
检索条件"主题词=Multi-modal Large-language Model"
1 条 记 录,以下是1-10 订阅
排序:
SUVAD: Semantic Understanding Based Video Anomaly Detection Using MLLM
SUVAD: Semantic Understanding Based Video Anomaly Detection ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Gao, Shibo Yang, Peipei Huang, Linlin Beijing Jiaotong University China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences China School of Artificial Intelligence University of Chinese Academy of Sciences China
Video anomaly detection (VAD) aims at detecting anomalous events in videos. Most existing VAD methods distinguish anomalies by learning visual features of the video, which usually face several challenges in real-world... 详细信息
来源: 评论