We present a new approach for automatic gas meter reading from real world images. The gas meter reading is usually done on site by an operator and a picture is taken from a mobile device as proof of reading. Since the...
详细信息
We present a new approach for automatic gas meter reading from real world images. The gas meter reading is usually done on site by an operator and a picture is taken from a mobile device as proof of reading. Since the reading operation is prone to errors, the proof image is checked offline by another operator to confirm the reading. In this study, we present a method to support the validation process in order to reduce the human effort. Our approach is trained to detect and recognize the text of a particular area of interest. Firstly we detect the region of interest and segment the text contained using a method based on an ensemble of neural models. Then we perform an optical character recognition using a Support Vector Machine. We evaluated every step of our approach, as well as the overall assessment, showing that despite the complexity of the problem our method provide good results also when applied to degraded images and can therefore be used in real applications. (C) 2012 Elsevier B.V. All rights reserved.
This paper presents a modular implementation of an artificial neural network to model the atmospheric plasma spray process in predicting the in-flight particle characteristics from the input processing parameters. The...
详细信息
This paper presents a modular implementation of an artificial neural network to model the atmospheric plasma spray process in predicting the in-flight particle characteristics from the input processing parameters. The in-flight particle characteristics influence the structure and properties of the thermal spray coating and, thus, are considered important parameters to comprehend, simulate and predict the manufacturing process. The modular implementation allows simplification of the optimized model structure with enhanced ability to generalise the network. As well, the underlying relationship between each of the output in-flight characteristics with respect to the input processing parameters is explored. Smaller networks are constructed that achieves better, or in some cases, similar results. The training process is found to be more robust and stable along with fewer fluctuations in the values of the network parameters. The networks also respond to the variations of the number of hidden layer neurons with some definite trend. The predictable trend enhances reliability of the application of the artificial neural network in modelling the atmospheric plasma spray process and overcomes the variability and nonlinearity associated with the process. (C) 2015 Elsevier Ltd. All rights reserved.
暂无评论