咨询与建议

限定检索结果

文献类型

  • 199 篇 期刊文献
  • 121 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 297 篇 工学
    • 225 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 30 篇 软件工程
    • 21 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 动力工程及工程热...
    • 11 篇 石油与天然气工程
    • 9 篇 水利工程
    • 7 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 63 篇 理学
    • 34 篇 数学
    • 17 篇 生物学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 62 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 4 篇 农学
    • 2 篇 作物学
  • 3 篇 医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 321 篇 multi-objective ...
  • 26 篇 multi-objective ...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary alg...
  • 11 篇 nsga-ii
  • 10 篇 many-objective o...
  • 8 篇 optimization
  • 8 篇 evolutionary com...
  • 7 篇 fuzzy rule-based...
  • 7 篇 search-based sof...
  • 7 篇 pareto front
  • 7 篇 differential evo...
  • 6 篇 combinatorial op...
  • 6 篇 scheduling
  • 5 篇 neural architect...
  • 5 篇 parallel and dis...
  • 5 篇 moea/d
  • 5 篇 feature selectio...
  • 4 篇 multi-criteria d...
  • 4 篇 accuracy-interpr...

机构

  • 5 篇 hosei univ fac c...
  • 4 篇 univ pisa dipart...
  • 4 篇 tokai univ sch i...
  • 3 篇 hosei univ grad ...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ cordoba dep...
  • 3 篇 univ granada dep...
  • 2 篇 amirkabir univ t...
  • 2 篇 ort braude coll ...
  • 2 篇 univ south austr...
  • 2 篇 hunan univ sch c...
  • 2 篇 univ jaen dept c...
  • 2 篇 cyber dyne srl v...
  • 2 篇 xidian univ sch ...
  • 2 篇 royal univ bhuta...
  • 2 篇 delft univ techn...
  • 2 篇 basque res & tec...
  • 2 篇 univ basque coun...
  • 2 篇 nanjing univ sta...
  • 2 篇 east china univ ...

作者

  • 10 篇 marcelloni franc...
  • 8 篇 lazzerini beatri...
  • 6 篇 jimenez fernando
  • 6 篇 sato yuji
  • 6 篇 sanchez gracia
  • 5 篇 qian chao
  • 5 篇 ducange pietro
  • 5 篇 coello coello ca...
  • 5 篇 dufo-lopez rodol...
  • 4 篇 yao xin
  • 4 篇 liu dan-xuan
  • 4 篇 gastelum chavira...
  • 4 篇 guo jianmei
  • 4 篇 zapotecas-martin...
  • 4 篇 antonelli michel...
  • 4 篇 leyva lopez juan...
  • 4 篇 marquez-vega lui...
  • 4 篇 palma jose
  • 4 篇 miyakawa minami
  • 4 篇 shi kai

语言

  • 306 篇 英文
  • 15 篇 其他
检索条件"主题词=Multi-objective Evolutionary Algorithms"
321 条 记 录,以下是111-120 订阅
Pareto Rank Learning in multi-objective evolutionary algorithms
Pareto Rank Learning in Multi-objective Evolutionary Algorit...
收藏 引用
IEEE Congress on evolutionary Computation (CEC)
作者: Seah, Chun-Wei Ong, Yew-Soon Tsang, Ivor W. Jiang, Siwei Nanyang Technol Univ Sch Comp Engn Singapore 639798 Singapore
In this paper, the interest is on cases where assessing the goodness of a solution for the problem is costly or hazardous to construct or extremely computationally intensive to compute. We label such category of probl... 详细信息
来源: 评论
Applying Social Choice Theory to Solve Engineering multi-objective Optimization Problems
收藏 引用
JOURNAL OF CONTROL AUTOMATION AND ELECTRICAL SYSTEMS 2020年 第1期31卷 119-128页
作者: de Carvalho, Vinicius Renan Larson, Kate Brandao, Anarosa Alves Franco Sichman, Jaime Simao Univ Sao Paulo EP LTI Sao Paulo Brazil Univ Waterloo Cheriton Sch Comp Sci Waterloo ON Canada
multi-objective optimization problems usually do not have a single unique optimal solution, for either discrete or continuous domains. Furthermore, there are usually many possible available algorithms for solving thes... 详细信息
来源: 评论
A novel multi-objective evolutionary algorithm based on subpopulations for the bi-objective traveling salesman problem
收藏 引用
SOFT COMPUTING 2019年 第15期23卷 6157-6168页
作者: Moraes, Deyvid Heric Sanches, Danilo Sipoli Rocha, Josimar da Silva Caldonazzo Garbelini, Jader Maikol Castoldi, Marcelo Favoretto Univ Tecnol Fed Parana Av Alberto Carazzai Cornelio Procopio PR Brazil
This paper presents a new approach called MOEA/NSM (multi-objective evolutionary algorithm integrating NSGA-II, SPEA2 and MOEA/D features). This paper combines the main characteristics of the NSGA-II, SPEA2 and MOEA/D... 详细信息
来源: 评论
A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems
收藏 引用
SOFT COMPUTING 2019年 第4期23卷 1321-1336页
作者: Elhag, Salma Fernandez, Alberto Altalhi, Abdulrahman Alshomrani, Saleh Herrera, Francisco Univ Jeddah Fac Comp & Informat Technol Jeddah 21589 Saudi Arabia Univ Granada Dept Comp Sci & Artificial Intelligence E-18071 Granada Spain King Abdulaziz Univ Fac Comp & Informat Technol Jeddah 21589 Saudi Arabia
Intrusion detection systems are devoted to monitor a network with aims at finding and avoiding anomalous events. In particular, we focus on misuse detection systems, which are trained to identify several known types o... 详细信息
来源: 评论
Performance, Energy, and Temperature Enabled Task Scheduling using evolutionary Techniques
收藏 引用
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS 2019年 22卷 272-286页
作者: Sheikh, Hafiz Fahad Ahmad, Ishfaq Arshad, Sheheryar Ali Univ Texas Arlington Dept Comp Sci & Engn Arlington TX 76019 USA
In allocating parallel tasks to cores, most energy and thermal-aware scheduling techniques rely on Dynamic Voltage and Frequency Scaling (DVFS) to mark up and down core speeds for running the system under the desired ... 详细信息
来源: 评论
A methodology for evaluating multi-objective evolutionary feature selection for classification in the context of virtual screening
收藏 引用
SOFT COMPUTING 2019年 第18期23卷 8775-8800页
作者: Jimenez, Fernando Perez-Sanchez, Horacio Palma, Jose Sanchez, Gracia Martinez, Carlos Univ Murcia Fac Informat Dept Informat & Commun Engn E-30100 Murcia Spain Catholic Univ San Antonio Murcia UCAM Comp Engn Dept Bioinformat & High Performance Comp Res Grp BIOHP Murcia 30107 Spain Univ Murcia Int Doctorate Sch E-30100 Murcia Spain
Virtual screening (VS) methods have been shown to increase success rates in many drug discovery campaigns, when they complement experimental approaches, such as high-throughput screening methods or classical medicinal... 详细信息
来源: 评论
multi-objective evolutionary optimization using the relationship between F1 and accuracy metrics in classification tasks
收藏 引用
APPLIED INTELLIGENCE 2019年 第9期49卷 3447-3463页
作者: Carlos Fernandez, Juan Carbonero, Mariano Antonio Gutierrez, Pedro Hervas-Martinez, Cesar Univ Cordoba Dept Comp Sci & Numer Anal E-14071 Cordoba Spain Univ Loyola Andalucia Dept Quantitat Methods Cordoba Spain
This work analyses the complementarity and contrast between two metrics commonly used for evaluating the quality of a binary classifier: the correct classification rate or accuracy, C, and the F-1 metric, which is ver... 详细信息
来源: 评论
New hybrid between NSGA-III with multi-objective particle swarm optimization to multi-objective robust optimization design for Powertrain mount system of electric vehicles
收藏 引用
ADVANCES IN MECHANICAL ENGINEERING 2020年 第2期12卷
作者: Nguyen Huy Truong Dinh-Nam Dao Inst Mil Mech Engn Hanoi Vietnam Le Quy Don Tech Univ Control Technol Coll Hanoi 100000 Vietnam
In this study, a new methodology, hybrid NSGA-III with multi-objective particle swarm optimization (HNSGA-III&MOPSO), has been developed to design and achieve cost optimization of Powertrain mount system stiffness... 详细信息
来源: 评论
OPLA-Tool v2.0: a Tool for Product Line Architecture Design Optimization  20
OPLA-Tool v2.0: a Tool for Product Line Architecture Design ...
收藏 引用
34th Brazilian Symposium on Software Engineering (SBES)
作者: Freire, Willian Marques Massago, Mamoru Zavadski, Arthur Cattaneo Malachini Miotto Amaral, Aline Maria Colanzi, Thelma Elita Univ Estadual Maringa Maringa Parana Brazil
The multi-objective Optimization Approach for Product Line Architecture Design (MOA4PLA) is the seminal approach that successfully optimizes Product Line Architecture (PLA) design using search algorithms. The tool nam... 详细信息
来源: 评论
A Novel Outlook on Feature Selection as a multi-objective Problem  1
收藏 引用
14th Biennial International Conference on Artificial Evolution (EA)
作者: Barbiero, Pietro Lutton, Evelyne Squillero, Giovanni Tonda, Alberto Politecn Torino Turin Italy Univ Paris Saclay AgroParisTech INRA UMR 782 Thiverval Grignon France
Feature selection is the process of choosing, or removing, features to obtain the most informative feature subset of minimal size. Such subsets are used to improve performance of machine learning algorithms and enable... 详细信息
来源: 评论