咨询与建议

限定检索结果

文献类型

  • 199 篇 期刊文献
  • 121 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 296 篇 工学
    • 224 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 30 篇 软件工程
    • 21 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 动力工程及工程热...
    • 11 篇 石油与天然气工程
    • 9 篇 水利工程
    • 7 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 62 篇 理学
    • 34 篇 数学
    • 17 篇 生物学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 62 篇 管理学
    • 60 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 3 篇 农学
  • 3 篇 医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 321 篇 multi-objective ...
  • 26 篇 multi-objective ...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary alg...
  • 11 篇 nsga-ii
  • 10 篇 many-objective o...
  • 8 篇 optimization
  • 8 篇 evolutionary com...
  • 7 篇 fuzzy rule-based...
  • 7 篇 search-based sof...
  • 7 篇 pareto front
  • 7 篇 differential evo...
  • 6 篇 combinatorial op...
  • 6 篇 scheduling
  • 5 篇 neural architect...
  • 5 篇 parallel and dis...
  • 5 篇 moea/d
  • 5 篇 feature selectio...
  • 4 篇 multi-criteria d...
  • 4 篇 accuracy-interpr...

机构

  • 5 篇 hosei univ fac c...
  • 4 篇 univ pisa dipart...
  • 4 篇 tokai univ sch i...
  • 3 篇 hosei univ grad ...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ cordoba dep...
  • 3 篇 univ granada dep...
  • 2 篇 amirkabir univ t...
  • 2 篇 ort braude coll ...
  • 2 篇 univ south austr...
  • 2 篇 hunan univ sch c...
  • 2 篇 univ jaen dept c...
  • 2 篇 cyber dyne srl v...
  • 2 篇 xidian univ sch ...
  • 2 篇 royal univ bhuta...
  • 2 篇 delft univ techn...
  • 2 篇 basque res & tec...
  • 2 篇 univ basque coun...
  • 2 篇 nanjing univ sta...
  • 2 篇 east china univ ...

作者

  • 10 篇 marcelloni franc...
  • 8 篇 lazzerini beatri...
  • 6 篇 jimenez fernando
  • 6 篇 sato yuji
  • 6 篇 sanchez gracia
  • 5 篇 qian chao
  • 5 篇 ducange pietro
  • 5 篇 coello coello ca...
  • 5 篇 dufo-lopez rodol...
  • 4 篇 yao xin
  • 4 篇 liu dan-xuan
  • 4 篇 gastelum chavira...
  • 4 篇 guo jianmei
  • 4 篇 zapotecas-martin...
  • 4 篇 antonelli michel...
  • 4 篇 leyva lopez juan...
  • 4 篇 marquez-vega lui...
  • 4 篇 palma jose
  • 4 篇 miyakawa minami
  • 4 篇 shi kai

语言

  • 306 篇 英文
  • 15 篇 其他
检索条件"主题词=Multi-objective Evolutionary algorithms"
321 条 记 录,以下是271-280 订阅
排序:
Constraint Handling within MOEA/D Through an Additional Scalarizing Function
Constraint Handling within MOEA/D Through an Additional Scal...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Zapotecas-Martinez, Saul Ponsich, Antonin UAM Cuajimalpa Mexico City DF Mexico UAM Azcapotzalco Mexico City DF Mexico
The multi-objective evolutionary Algorithm based on Decomposition (MOEA/D) has shown high-performance levels when solving complicated multi-objective optimization problems. However, its adaptation for dealing with con... 详细信息
来源: 评论
Coevolving Collection Plans for UAS Constellations  11
Coevolving Collection Plans for UAS Constellations
收藏 引用
13th Annual Genetic and evolutionary Computation Conference (GECCO)
作者: Stouch, Daniel W. Zeidman, Ernest Richards, Marc McGraw, Kirk D. Callahan, William Charles River Analyt 625 Mt Auburn St Cambridge MA 02138 USA US Army ERDC CERL Cambridge MA 02138 USA
Our SPARTEN (Spatially Produced Airspace Routes from Tactical Evolved Networks) tool generates coordinated mission plans for constellations of unmanned aerial vehicles by allowing the mission planner to specify the im... 详细信息
来源: 评论
multiobjective Discrete Differential Evolution for Service Restoration in Energy Distribution Systems
Multiobjective Discrete Differential Evolution for Service R...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Sanches, Danilo S. London, Joao Bosco A., Jr. Delbem, Alexandre C. B. Univ Tecnol Fed Parana Cornelio Procopio PR Brazil Univ Sao Paulo Sao Carlos Sch Engn Sao Carlos SP Brazil Univ Sao Paulo Inst Math & Comp Sci Sao Carlos SP Brazil
This paper presents a new multiobjective discrete differential evolution for service restoration in distribution systems. The proposed approach was compared with other five multiobjective evolutionary algorithms (MOEA... 详细信息
来源: 评论
A NOVEL DYNAMIC CROWDING DISTANCE BASED DIVERSITY MAINTENANCE STRATEGY FOR MOEAS  16
A NOVEL DYNAMIC CROWDING DISTANCE BASED DIVERSITY MAINTENANC...
收藏 引用
International Conference on Machine Learning and Cybernetics (ICMLC)
作者: Yang, Ling Guan, Yuyang Sheng, Weiguo Zhejiang Univ Technol Sch Comp Sci & Technol Hangzhou 310023 Zhejiang Peoples R China Hangzhou Normal Univ Dept Comp Sci Hangzhou 310036 Zhejiang Peoples R China
Preserving population diversity is crucial for the performance of multi-objective evolutionary algorithms (MOEAs). In this paper, we propose a novel dynamic crowding distance based diversity preserving strategy for MO... 详细信息
来源: 评论
NSGA-II: Implementation and Performance Metrics Extraction for CPU and GPU  16
NSGA-II: Implementation and Performance Metrics Extraction f...
收藏 引用
16th International Symposium on Symbolic and Numeric algorithms for Scientific Computing (SYNASC)
作者: Padurariu, Florina Roxana Marinescu, Cristina Politehn Univ Timisoara Timisoara Romania West Univ Timisoara Timisoara Romania
multi-objective Optimization evolutionary algorithms are widely employed for solving different real-world optimization problems. Usually their runs involve a considerable amount of time because of the need to evaluate... 详细信息
来源: 评论
A multi-objective Genetic Local Search Algorithm for Optimal Feature Subset Selection
A Multi-objective Genetic Local Search Algorithm for Optimal...
收藏 引用
International Conference on Computational Science and Computational Intelligence (CSIC)
作者: Tian, David Leeds Beckett Univ Leeds Sustainabil Inst Leeds LS1 3HE W Yorkshire England
Feature selection algorithms select the most relevant features of a data set to improve the classification performance of the machine learning classifiers trained using the data set. This paper proposes a feature sele... 详细信息
来源: 评论
multimodal multi-objective Optimization Using A Density-based One-by-One Update Strategy
Multimodal Multi-objective Optimization Using A Density-base...
收藏 引用
IEEE Congress on evolutionary Computation (IEEE CEC)
作者: Shi, Ruizhi Lin, Wu Lin, Qiuzhen Zhu, Zexuan Chen, Jianyong Shenzhen Univ Coll Comp Sci & Software Engn Shenzhen Guangdong Peoples R China
For real-world optimization problems, a uniformly and widely distributed Pareto optimal set (PS) in the decision space can provide more choices for decision makers. However, most of multi-objective evolutionary algori... 详细信息
来源: 评论
multi-objective Design Optimization of Three-Phase Induction Motor Using NSGA-II Algorithm  1
Multi-objective Design Optimization of Three-Phase Induction...
收藏 引用
1st International Conference on Computational Intelligence in Data Mining (ICCIDM)
作者: Ranjan, Soumya Mishra, Sudhansu Kumar NIST Dept Elect & Elect Engn Berhampur Orissa India Birla Inst Technol Dept Elect & Elect Engn Ranchi Bihar India
The modeling of electrical machine is approached as a system optimization, more than a simple machine sizing. Hence wide variety of designs are available and the task of comparing the different options can be very dif... 详细信息
来源: 评论
Hybrid multi-objective Greenhouse Crop Optimization using the Parallel Island Model
Hybrid Multi-Objective Greenhouse Crop Optimization using th...
收藏 引用
7th International Conference on Engineering Computational Technology
作者: Marquez, A. L. Gil, C. Manzano-Agugliaro, F. Montoya, F. G. Montoya, M. G. Banos, R. Univ Almeria Dept Comp Architecture & Elect La Canada De San Urbano Almeria Spain Univ Almeria Dept Rural Engn La Canada De San Urbano Almeria Spain
multi-objective evolutionary algorithms are commonly used to solve complex problems. It is possible to improve the quality of the solutions they can produce by means of employing advanced parallelization techniques. T... 详细信息
来源: 评论
Adaptive Pareto differential evolution and its parallelization
收藏 引用
5th International Conference on Parallel Processing and Applied Mathematics
作者: Zaharie, D Petcu, D W Univ Timisoara Dept Comp Sci Timisoara 300223 Romania
An adaptive Pareto differential evolution algorithm for multi-objective optimization is proposed. Its effectiveness on approximating the Pareto front is compared with that of SPEA[9] and of SPDE[2]. A parallel impleme... 详细信息
来源: 评论