咨询与建议

限定检索结果

文献类型

  • 198 篇 期刊文献
  • 122 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 297 篇 工学
    • 224 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 29 篇 软件工程
    • 20 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 动力工程及工程热...
    • 11 篇 石油与天然气工程
    • 9 篇 水利工程
    • 7 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 土木工程
    • 3 篇 化学工程与技术
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 63 篇 理学
    • 34 篇 数学
    • 17 篇 生物学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 62 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 4 篇 农学
    • 2 篇 作物学
  • 3 篇 医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 321 篇 multi-objective ...
  • 26 篇 multi-objective ...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary alg...
  • 11 篇 nsga-ii
  • 10 篇 many-objective o...
  • 8 篇 optimization
  • 8 篇 evolutionary com...
  • 7 篇 fuzzy rule-based...
  • 7 篇 search-based sof...
  • 7 篇 pareto front
  • 7 篇 differential evo...
  • 6 篇 combinatorial op...
  • 6 篇 scheduling
  • 5 篇 neural architect...
  • 5 篇 data mining
  • 5 篇 parallel and dis...
  • 5 篇 moea/d
  • 5 篇 feature selectio...
  • 5 篇 artificial neura...

机构

  • 5 篇 hosei univ fac c...
  • 4 篇 univ pisa dipart...
  • 4 篇 tokai univ sch i...
  • 3 篇 hosei univ grad ...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ cordoba dep...
  • 3 篇 univ granada dep...
  • 2 篇 amirkabir univ t...
  • 2 篇 ort braude coll ...
  • 2 篇 univ south austr...
  • 2 篇 hunan univ sch c...
  • 2 篇 univ jaen dept c...
  • 2 篇 cyber dyne srl v...
  • 2 篇 xidian univ sch ...
  • 2 篇 royal univ bhuta...
  • 2 篇 delft univ techn...
  • 2 篇 basque res & tec...
  • 2 篇 univ basque coun...
  • 2 篇 nanjing univ sta...
  • 2 篇 east china univ ...

作者

  • 10 篇 marcelloni franc...
  • 8 篇 lazzerini beatri...
  • 6 篇 jimenez fernando
  • 6 篇 sato yuji
  • 6 篇 sanchez gracia
  • 5 篇 qian chao
  • 5 篇 ducange pietro
  • 5 篇 coello coello ca...
  • 5 篇 dufo-lopez rodol...
  • 4 篇 yao xin
  • 4 篇 liu dan-xuan
  • 4 篇 gastelum chavira...
  • 4 篇 guo jianmei
  • 4 篇 zapotecas-martin...
  • 4 篇 antonelli michel...
  • 4 篇 leyva lopez juan...
  • 4 篇 marquez-vega lui...
  • 4 篇 palma jose
  • 4 篇 miyakawa minami
  • 4 篇 shi kai

语言

  • 305 篇 英文
  • 16 篇 其他
检索条件"主题词=Multi-objective Evolutionary algorithms"
321 条 记 录,以下是61-70 订阅
排序:
multi-objective parallel robotic dispensing planogram optimisation using association rule mining and evolutionary algorithms
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 2018年 第8期31卷 799-814页
作者: Wang, Haifeng Dauod, Husam Khader, Nourma Yoon, Sang Won Srihari, Krishnaswami SUNY Binghamton Dept Syst Sci & Ind Engn Binghamton NY 13902 USA
This research addresses a medication planogram optimisation problem for robotic dispensing systems (RDSs) in mail-order pharmacy automation (MOPA) facilities. A MOPA is used by a high-throughput fulfilment facility th... 详细信息
来源: 评论
multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms
收藏 引用
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING 2002年 第3期31卷 259-289页
作者: Bosman, PAN Thierens, D Univ Utrecht Inst Comp & Informat Sci NL-3508 TB Utrecht Netherlands
Stochastic optimization by learning and using probabilistic models has received an increasing amount of attention over the last few years. algorithms within this field estimate the probability distribution of a select... 详细信息
来源: 评论
Solving multi-objective Optimal Control Problems Using a multiresolution Approach
收藏 引用
JOURNAL OF GUIDANCE CONTROL AND DYNAMICS 2025年 第1期48卷 32-45页
作者: Parsonage, Ben Maddock, Christie Univ Strathclyde Dept Mech & Aerosp Engn Glasgow Scotland
This paper presents an adaptive multiresolution strategy for multi-objective optimal control problems. The optimal control problem is solved using a direct approach, with individualistic grid adaptation facilitated by... 详细信息
来源: 评论
Knowledge-guided classification and regression surrogates co-assisted multi-objective soft subspace clustering algorithm
收藏 引用
APPLIED INTELLIGENCE 2025年 第6期55卷 1-29页
作者: Zhao, Feng Li, Lu Liu, Hanqiang Xian Univ Posts & Telecommun Sch Telecommun & Informat Engn Xian 710121 Peoples R China Shaanxi Normal Univ Sch Comp Sci Xian 710119 Peoples R China
The efficiency of multi-objective soft subspace clustering algorithms (MSSCAs) can be low when applied to large-scale datasets. This inefficiency arises because the multi-objective evolutionary algorithms (MOEAs) util... 详细信息
来源: 评论
evolutionary algorithms for multi-objective stochastic resource availability cost problem
收藏 引用
OPSEARCH 2020年 第3期57卷 935-985页
作者: Arjmand, Masoud Najafi, Amir Abbas Ebrahimzadeh, Majid Islamic Azad Univ Fac Ind & Mech Engn Dept Ind Engn Qazvin Branch Qazvin Iran KN Toosi Univ Technol Fac Ind Engn Tehran Iran
This paper investigates the resource availability cost problem in a PERT-type network, where both activities duration and resource requirement are considered as stochastic parameters. The problem has two objective fun... 详细信息
来源: 评论
MoAR-CNN: multi-objective Adversarially Robust Convolutional Neural Network for SAR Image Classification
收藏 引用
IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE 2025年 第1期9卷 57-74页
作者: Wei, Hai-Nan Zeng, Guo-Qiang Lu, Kang-Di Geng, Guang-Gang Weng, Jian Jinan Univ Coll Cyber Secur Guangzhou 510632 Peoples R China Jinan Univ Natl Joint Engn Res Ctr Network Secur Detect & Pro Guangzhou 510632 Peoples R China Wenzhou Univ Natl Local Joint Engn Res Ctr Digitalized Elect De Wenzhou 325035 Peoples R China Donghua Univ Coll Informat Sci & Technol Shanghai 201620 Peoples R China Zhejiang Univ Inst Cyber Syst & Control Hangzhou Peoples R China
Deep neural networks (DNNs) have been widely applied to the synthetic aperture radar (SAR) images detection and classification recently while different kinds of adversarial attacks from malicious adversary and the hid... 详细信息
来源: 评论
Study of evolutionary algorithms for multi-objective Optimization
收藏 引用
SN Computer Science 2022年 第5期3卷 409页
作者: Gaikwad, Rama Lakshmanan, Ramanathan School of Computer Science & Engineering Vellore Institute of Technology Vellore India
There are two prominent principles of any information retrieval system precision and analysis. Precision is the proportion of correct documents retrieved by the information retrieval system to the total number of arch... 详细信息
来源: 评论
evolutionary algorithms for multi-objective optimization: Fuzzy preference aggregation and multi-sexual EAs
Evolutionary algorithms for multi-objective optimization: Fu...
收藏 引用
4th International Conference on Applications and Science of Neural Networks, Fuzzy Systems, and evolutionary Computation
作者: Bonissone, SR GE Co Ctr Corp Res & Dev Schenectady NY 12301 USA
There are many approaches to solving multi-objective optimization problems using evolutionary algorithms. We need to select methods for representing and aggregating preferences, as well as choosing strategies for sear... 详细信息
来源: 评论
multi-objective NETWORK RELIABILITY OPTIMIZATION USING evolutionary algorithms
MULTI-OBJECTIVE NETWORK RELIABILITY OPTIMIZATION USING EVOLU...
收藏 引用
15th ISSAT International Conference on Reliability and Quality in Design
作者: Aguirre, Oswaldo Villanueva, Delia Taboada, Heidi Univ Texas El Paso Dept Ind Engn El Paso TX 79968 USA
In the present paper a multi-objective evolutionary algorithm is developed to solve three different network reliability design problems taking in account reliability, cost and weight as objective functions to be optim... 详细信息
来源: 评论
Comparison of evolutionary multi-objective Optimization algorithms on the Tuning of PI Controllers for Electric Drives  8
Comparison of Evolutionary Multi-Objective Optimization Algo...
收藏 引用
8th Southern Power Electronics Conference and the 17th Brazilian Power Electronics Conference, SPEC / COBEP 2023
作者: Dos Santos, Guilherme F. Da Silva, Wander G. Pickert, Volker De Paula, Geyverson T. School of Electrical Mechanical and Computer Engineering Federal University of Golás Goiânia Brazil School of Engineering Newcastle University Newcastle upon Tyne United Kingdom
This paper presents a comparison of the two most used evolutionary algorithms for multi-objective problems, Strength Pareto evolutionary Algorithm 2 (SPEA2) and Non-Dominated Sorting Genetic Algorithm II (NSGA-II), ap... 详细信息
来源: 评论