咨询与建议

限定检索结果

文献类型

  • 199 篇 期刊文献
  • 121 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 321 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 297 篇 工学
    • 225 篇 计算机科学与技术...
    • 62 篇 电气工程
    • 30 篇 软件工程
    • 21 篇 控制科学与工程
    • 13 篇 机械工程
    • 13 篇 信息与通信工程
    • 11 篇 动力工程及工程热...
    • 11 篇 石油与天然气工程
    • 9 篇 水利工程
    • 7 篇 环境科学与工程(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 航空宇航科学与技...
    • 4 篇 生物医学工程(可授...
    • 3 篇 土木工程
    • 2 篇 仪器科学与技术
    • 2 篇 材料科学与工程(可...
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 2 篇 交通运输工程
    • 2 篇 船舶与海洋工程
  • 63 篇 理学
    • 34 篇 数学
    • 17 篇 生物学
    • 4 篇 物理学
    • 3 篇 地球物理学
    • 3 篇 统计学(可授理学、...
    • 2 篇 化学
    • 2 篇 系统科学
  • 62 篇 管理学
    • 60 篇 管理科学与工程(可...
  • 4 篇 农学
    • 2 篇 作物学
  • 3 篇 医学
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 321 篇 multi-objective ...
  • 26 篇 multi-objective ...
  • 15 篇 genetic algorith...
  • 11 篇 evolutionary alg...
  • 11 篇 nsga-ii
  • 10 篇 many-objective o...
  • 8 篇 optimization
  • 8 篇 evolutionary com...
  • 7 篇 fuzzy rule-based...
  • 7 篇 search-based sof...
  • 7 篇 pareto front
  • 7 篇 differential evo...
  • 6 篇 combinatorial op...
  • 6 篇 scheduling
  • 5 篇 neural architect...
  • 5 篇 parallel and dis...
  • 5 篇 moea/d
  • 5 篇 feature selectio...
  • 4 篇 multi-criteria d...
  • 4 篇 accuracy-interpr...

机构

  • 5 篇 hosei univ fac c...
  • 4 篇 univ pisa dipart...
  • 4 篇 tokai univ sch i...
  • 3 篇 hosei univ grad ...
  • 3 篇 univ zaragoza de...
  • 3 篇 univ cordoba dep...
  • 3 篇 univ granada dep...
  • 2 篇 amirkabir univ t...
  • 2 篇 ort braude coll ...
  • 2 篇 univ south austr...
  • 2 篇 hunan univ sch c...
  • 2 篇 univ jaen dept c...
  • 2 篇 cyber dyne srl v...
  • 2 篇 xidian univ sch ...
  • 2 篇 royal univ bhuta...
  • 2 篇 delft univ techn...
  • 2 篇 basque res & tec...
  • 2 篇 univ basque coun...
  • 2 篇 nanjing univ sta...
  • 2 篇 east china univ ...

作者

  • 10 篇 marcelloni franc...
  • 8 篇 lazzerini beatri...
  • 6 篇 jimenez fernando
  • 6 篇 sato yuji
  • 6 篇 sanchez gracia
  • 5 篇 qian chao
  • 5 篇 ducange pietro
  • 5 篇 coello coello ca...
  • 5 篇 dufo-lopez rodol...
  • 4 篇 yao xin
  • 4 篇 liu dan-xuan
  • 4 篇 gastelum chavira...
  • 4 篇 guo jianmei
  • 4 篇 zapotecas-martin...
  • 4 篇 antonelli michel...
  • 4 篇 leyva lopez juan...
  • 4 篇 marquez-vega lui...
  • 4 篇 palma jose
  • 4 篇 miyakawa minami
  • 4 篇 shi kai

语言

  • 306 篇 英文
  • 15 篇 其他
检索条件"主题词=Multi-objective Evolutionary algorithms"
321 条 记 录,以下是71-80 订阅
排序:
AI based realtime task schedulers for multicore processor based low power biomedical devices for health care application
收藏 引用
multiMEDIA TOOLS AND APPLICATIONS 2022年 第29期81卷 42079-42095页
作者: Prabhaker, M. Lordwin Cecil Ponnan, Suresh Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & Dept ECE Chennai Tamil Nadu India
The bioinformatics data processing plays a vital role in low power biomedical devices. The functional domain of processing biological data is collection, execution, conversion, storing and distribution. So, there is a... 详细信息
来源: 评论
multi-objective evolutionary optimization for dimensionality reduction of texts represented by synsets
收藏 引用
PEERJ COMPUTER SCIENCE 2023年 9卷 e1240页
作者: de Mendizabal, Inaki Velez Basto-Fernandes, Vitor Ezpeleta, Enaitz Mendez, Jose R. Gomez-Meire, Silvana Zurutuza, Urko Mondragon Unibertsitatea Elect & Comp Dept Gipuzkoa Spain Univ Inst Lisbon ISTAR Inst Univ Lisboa ISCTE IUL IUL Lisbon Portugal Hosp Alvaro Cunqueiro Galicia Hlth Res Inst IIS Galicia Sur Bloque tecn SING Res Grp Pontevedra Spain Biomed Res Ctr CINBIO Lagoas Marcosende Vigo Spain Dept Comp Sci Univ Vigo Orense Spain
Despite new developments in machine learning classification techniques, improving the accuracy of spam filtering is a difficult task due to linguistic phenomena that limit its effectiveness. In particular, we highligh... 详细信息
来源: 评论
Efficient multi-objective evolutionary neural architecture search for U-Nets with diamond atrous convolution and Transformer for medical image segmentation
收藏 引用
APPLIED SOFT COMPUTING 2023年 148卷
作者: Ying, Weiqin Zheng, Qiaoqiao Wu, Yu Yang, Kaihao Zhou, Zekun Chen, Jiajun Ye, Zilin South China Univ Technol Sch Software Engn Guangzhou 510006 Guangdong Peoples R China Guangzhou Univ Sch Comp Sci & Cyber Engn Guangzhou 510006 Guangdong Peoples R China
Deep encoder-decoder neural networks like U-Nets have made significant contributions to the development of computer vision applications such as image segmentation. Neural architecture search (NAS) has the potential to... 详细信息
来源: 评论
Adaptively weighted decomposition based multi-objective evolutionary algorithm
收藏 引用
APPLIED INTELLIGENCE 2021年 第6期51卷 3801-3823页
作者: Meghwani, Suraj S. Thakur, Manoj Vellore Inst Technol Sch Comp Sci & Engn SCOPE Vellore Tamil Nadu India Indian Inst Technol Sch Basic Sci Mandi Himachal Prades India
multi-objective evolutionary algorithm based on Decomposition (MOEA/D) decomposes a multi-objective problem into a number of scalar optimization problems using uniformly distributed weight vectors. However, uniformly ... 详细信息
来源: 评论
An Investigation into Many-objective Optimization Problems: A Case Study of the Dial-a-Ride Problem
收藏 引用
IEEE LATIN AMERICA TRANSACTIONS 2022年 第1期20卷 73-81页
作者: Viana, Renan J. dos S. Martins, Flavio V. Cruzeiro Wanner, Elizabeth F. CEFET MG Programa Pos Grad Modelagem Matemat & Computac Belo Horizonte MG Brazil CEFET MG Dept Comp Belo Horizonte MG Brazil
multi-objective optimization problems with more than three objectives are commonly referred to as many-objective optimization problems. Usually, this class of problem brings new and complex challenges to the current o... 详细信息
来源: 评论
Diffusely Distributed Parallelization of MOEA/D with Edge Weight Vectors Sharing
Diffusely Distributed Parallelization of MOEA/D with Edge We...
收藏 引用
Genetic and evolutionary Computation Conference (GECCO)
作者: Sato, Yuji Midtlyng, Mads Sato, Mikiko Hosei Univ Fac Comp & Informat Sci Tokyo Japan Hosei Univ Grad Sch Comp & Informat Sci Tokyo Japan Tokai Univ Sch Informat & Telecommun Engn Tokyo Japan
This paper proposes the partitioning method with edge weight vectors sharing for parallel distributed MOEA/D in a distributed memory environment. Massively parallelization in a distributed memory environment effective... 详细信息
来源: 评论
A new evolutionism based self-adaptive multi-objective optimization method to predict software cost estimation
收藏 引用
SOFTWARE-PRACTICE & EXPERIENCE 2022年 第8期52卷 1826-1848页
作者: Gouda, Sunil Kumar Mehta, Ashok Kumar Natl Inst Technol Dept Comp Sci & Engn Jamshedpur Bihar India
One of the major challenge that organizations face in the present environment is having an efficient model for software cost estimation (SCE). In this article, the significance of the meta-heuristic algorithm in addre... 详细信息
来源: 评论
Unsupervised text feature selection using NSGA II with Hill Climbing local search  27
Unsupervised text feature selection using NSGA II with Hill ...
收藏 引用
27th International Conference on Knowledge Based and Intelligent Information and Engineering Sytems, KES 2023
作者: Cornei, Laura Croitoru, Eugen Luchian, Henri Faculty of Computer Science Alexandru Ioan Cuza University 16 General Berthelot St. Iasi700483 Romania
This paper introduces a novel unsupervised text feature selection technique that combines the multi-objective evolutionary algorithm NSGA II with a local Hill Climbing based search. The objective functions in NSGA II ... 详细信息
来源: 评论
Towards a Pareto Front Shape Invariant multi-objective evolutionary Algorithm Using Pair-Potential Functions  1
收藏 引用
20th Mexican International Conference on Artificial Intelligence (MICAI)
作者: Marquez-Vega, Luis A. Guillermo Falcon-Cardona, Jesus Covantes Osuna, Edgar Tecnol Monterrey Sch Engn & Sci Monterrey 64849 Nuevo Leon Mexico UAM Cuajimalpa Dept Appl Math & Syst Mexico City 05348 DF Mexico
Reference sets generated with uniformly distributed weight vectors on a unit simplex are widely used by several multi-objective evolutionary algorithms (MOEAs). They have been employed to tackle multi-objective optimi... 详细信息
来源: 评论
Three-objective constrained evolutionary instance selection for classification: Wrapper and filter approaches
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2022年 第0期107卷 104531-104531页
作者: Jimenez, Fernando Sanchez, Gracia Palma, Jose Sciavicco, Guido Univ Murcia Dept Informat & Commun Engn Murcia Spain Univ Ferrara Dept Math & Comp Sci Ferrara Italy
The large amount of data that is produced today with new technologies is an impediment for machine learning algorithms to work correctly, both due to the memory requirements and the necessary execution times. That is ... 详细信息
来源: 评论