咨询与建议

限定检索结果

文献类型

  • 46 篇 期刊文献
  • 15 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 55 篇 工学
    • 42 篇 计算机科学与技术...
    • 12 篇 电气工程
    • 7 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 3 篇 机械工程
    • 3 篇 软件工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
  • 13 篇 管理学
    • 13 篇 管理科学与工程(可...
  • 10 篇 理学
    • 7 篇 数学
    • 2 篇 系统科学
    • 1 篇 物理学
    • 1 篇 化学
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 61 篇 multi-objective ...
  • 6 篇 differential evo...
  • 6 篇 particle swarm o...
  • 5 篇 evolutionary alg...
  • 4 篇 multi-objective ...
  • 2 篇 estimation of di...
  • 2 篇 metaheuristics
  • 2 篇 ant colony optim...
  • 2 篇 voice adaptation
  • 2 篇 pareto-optimal f...
  • 2 篇 speech processin...
  • 2 篇 video games
  • 2 篇 the external arc...
  • 2 篇 genetic algorith...
  • 2 篇 objective space ...
  • 1 篇 lu order relatio...
  • 1 篇 multi-objective ...
  • 1 篇 multi-objective
  • 1 篇 adaptive paramet...
  • 1 篇 algorithm recomm...

机构

  • 2 篇 guizhou minzu un...
  • 2 篇 hosei univ dept ...
  • 1 篇 zagazig univ fac...
  • 1 篇 department of in...
  • 1 篇 torrens univ aus...
  • 1 篇 amirkabir univ t...
  • 1 篇 east china univ ...
  • 1 篇 tianjin univ sch...
  • 1 篇 univ vigo etsi t...
  • 1 篇 natl inst techno...
  • 1 篇 nagoya univ grad...
  • 1 篇 univ teknol mala...
  • 1 篇 shri guru gobind...
  • 1 篇 xidian univ key ...
  • 1 篇 sao paulo state ...
  • 1 篇 stevens inst tec...
  • 1 篇 fatih sultan meh...
  • 1 篇 zunyi normal col...
  • 1 篇 univ teknol mala...
  • 1 篇 north china elec...

作者

  • 2 篇 cheshmehgaz hoss...
  • 2 篇 midtlyng mads
  • 2 篇 sato yuji
  • 2 篇 liu jing
  • 2 篇 yang jie
  • 2 篇 abualigah laith
  • 2 篇 liu yanmin
  • 1 篇 molina jose m.
  • 1 篇 he zhichen
  • 1 篇 chen zhihuan
  • 1 篇 zhang tao
  • 1 篇 zou juan
  • 1 篇 gao shang
  • 1 篇 wang lei
  • 1 篇 mi xifeng
  • 1 篇 wang jiayun
  • 1 篇 hou zhanglu
  • 1 篇 suito hiroshi
  • 1 篇 berlanga antonio
  • 1 篇 li yang

语言

  • 57 篇 英文
  • 4 篇 中文
检索条件"主题词=Multi-objective optimization problems"
61 条 记 录,以下是1-10 订阅
排序:
Modified differential evolution algorithm using a new diversity maintenance strategy for multi-objective optimization problems
收藏 引用
APPLIED INTELLIGENCE 2015年 第1期43卷 49-73页
作者: Chen, Bili Lin, Yangbin Zeng, Wenhua Zhang, Defu Si, Yain-Whar Xiamen Univ Software Sch Xiamen 361005 Fujian Peoples R China Xiamen Univ Sch Informat Sci & Engn Xiamen 361005 Fujian Peoples R China Univ Macau Dept Comp & Informat Sci Macau Peoples R China
In this paper, we propose a modified differential evolution (DE) based algorithm for solving multi-objective optimization problems (MOPs). The proposed algorithm, called multi-objective DE with dynamic selection mecha... 详细信息
来源: 评论
A MODIFIED NON-DOMINATED SORTING GENETIC ALGORITHM WITH FRACTIONAL FACTORIAL DESIGN FOR multi-objective optimization problems
收藏 引用
JOURNAL OF MECHANICS 2010年 第2期26卷 143-156页
作者: Liu, J. -L. Lee, T. -F. I Shou Univ Dept Informat Management Kaohsiung 84001 Taiwan
This study develops an intelligent non-dominated sorting genetic algorithm (GA), called INSGA herein, which includes a non-dominated sorting, crowded distance sorting, binary tournament selection, intelligent crossove... 详细信息
来源: 评论
CHARACTERIZATION OF EFFICIENT SOLUTIONS FOR multi-objective optimization problems INVOLVING SEMI-STRONG AND GENERALIZED SEMI-STRONG E-CONVEXITY
收藏 引用
Acta Mathematica Scientia 2008年 第1期28卷 7-16页
作者: E.A.Youness Tarek Emam Department of Mathematics Faculty of ScienceTanta UniversityTantaEgypt Department of Mathematics Faculty of Education in SuezSuez Canal UniversitySuezEgypt
The authors of this article are interested in characterization of efficient solutions for special classes of problems. These classes consider semi-strong E-convexity of involved functions. Sufficient and necessary con... 详细信息
来源: 评论
Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
收藏 引用
SOFT COMPUTING 2017年 第20期21卷 5883-5891页
作者: Guo, Weian Chen, Ming Wang, Lei Wu, Qidi Tongji Univ Sinogerman Coll Appl Sci Shanghai 201804 Peoples R China Tongji Univ Dept Elect & Informat Engn Shanghai 201804 Peoples R China
multi-objective optimization problems (MOPs) are very common in practice. To solve MOPs, many kinds of multi-objective evolutionary algorithms (MOEAs) are proposed. However, different MOEAs have different performances... 详细信息
来源: 评论
Empirical study on meta-feature characterization for multi-objective optimization problems
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第19期34卷 16255-16273页
作者: Chu, Xianghua Wang, Jiayun Li, Shuxiang Chai, Yujuan Guo, Yuqiu Shenzhen Univ Coll Management Shenzhen Peoples R China Shenzhen Univ Inst Big Data Intelligent Management & Decis Shenzhen Peoples R China Shenzhen Univ Hlth Sci Ctr Sch Biomed Engn Shenzhen Peoples R China Mt Sch York N Yorkshire England
Algorithm recommendation based on meta-learning was studied previously. The research on the meta-features extraction, which is a key for the success of recommendation, is lacking for multi-objective optimization probl... 详细信息
来源: 评论
Hybedrized NSGA-II and MOEA/D with Harmony Search Algorithm to Solve multi-objective optimization problems  22nd
Hybedrized NSGA-II and MOEA/D with Harmony Search Algorithm ...
收藏 引用
22nd International Conference on Neural Information Processing (ICONIP)
作者: Abu Doush, Iyad Bataineh, Mohammad Qasem Yarmouk Univ Dept Comp Sci Irbid Jordan
A multi-objective optimization problem is an area concerned an optimization problem involving more than one objective function to be optimized simultaneously. Several techniques have been proposed to solve multi-Objec... 详细信息
来源: 评论
A Strength Pareto Gravitational Search Algorithm for multi-objective optimization problems
收藏 引用
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE 2015年 第6期29卷 1559010-1559010页
作者: Yuan, Xiaohui Chen, Zhihuan Yuan, Yanbin Huang, Yuehua Zhang, Xiaopan Huazhong Univ Sci & Technol Sch Hydropower & Informat Engn Wuhan 430074 Peoples R China Wuhan Univ Technol Sch Resource & Environm Engn Wuhan 430070 Peoples R China China Three Gorges Univ Coll Elect Engn & New Energy Yichang 443002 Peoples R China
A novel strength Pareto gravitational search algorithm (SPGSA) is proposed to solve multi-objective optimization problems. This SPGSA algorithm utilizes the strength Pareto concept to assign the fitness values for age... 详细信息
来源: 评论
A modified differential evolution algorithm for multi-objective optimization problems
A modified differential evolution algorithm for multi-object...
收藏 引用
Chinese Conference on Pattern Recognition/1st CJK Joint Workshop on Pattern Recognition
作者: Tang Ke-zong Sun Ting-kai Yang Jing-yu Gao Shang Nanjing Univ Sci & Technol Sch Comp Sci & Technol Nanjing 210094 Peoples R China Jiangsu Univ Sci & Technol Schl Comp Sci & Engn Zhenjiang 212003 Peoples R China
Differential Evolutionary (DE) is a simple, fast and robust evolutionary algorithm for multi-objective optimization problems (MOPs). This paper is to introduce a modified differential evolutionary algorithm (MDE) to s... 详细信息
来源: 评论
Sparse large-scale multi-objective optimization algorithm based on impact factor assistance
收藏 引用
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2025年 151卷
作者: Hu, Ziyu Nie, Xuetao Sun, Hao Wei, Lixin Zhang, Jinlu Wang, Cong Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Hebei Peoples R China Yanshan Univ Key Lab Ind Comp Control Engn Hebei Prov Qinhuangdao 066004 Hebei Peoples R China
In the real world, there exists a special category of multi-objective optimization problems with more than 1000 decision variables. However, only a few decision variables play a crucial role in optimizing the objectiv... 详细信息
来源: 评论
An improved multi-objective particle swarm optimization algorithm for the design of foundation pit of rail transit upper cover project
收藏 引用
SCIENTIFIC REPORTS 2025年 第1期15卷 1-25页
作者: Shao, Jinyan Lu, Yuan Sun, Yi Zhao, Lei Beijing Jiaotong Univ TOD Inst Beijing 100044 Peoples R China Beijing Jiao Tong Univ Sch Architecture & Design Beijing 100044 Peoples R China China Architecture Design & Res Inst Co Ltd Shanghai Branch Shanghai Peoples R China Beijing Urban Construct Design & Dev Grp Co Ltd Beijing 100037 Peoples R China
In this study, a multi-objective particle swarm optimization (MOIPSO) algorithm is proposed to address complex optimization problems, including real-world engineering challenges. The algorithm retains the basic conver... 详细信息
来源: 评论