咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...
    • 1 篇 化学工程与技术

主题

  • 1 篇 data-driven opti...
  • 1 篇 reinforcement le...
  • 1 篇 multi-step looka...
  • 1 篇 batch-to-batch o...
  • 1 篇 active learning

机构

  • 1 篇 korea adv inst s...
  • 1 篇 princeton univ a...

作者

  • 1 篇 lee jay h.
  • 1 篇 kim boeun
  • 1 篇 byun ha-eun

语言

  • 1 篇 其他
检索条件"主题词=Multi-step lookahead Bayesian optimization"
1 条 记 录,以下是1-10 订阅
排序:
multi-step lookahead bayesian optimization with active learning using reinforcement learning and its application to data-driven batch-to-batch optimization
收藏 引用
COMPUTERS & CHEMICAL ENGINEERING 2022年 167卷
作者: Byun, Ha-Eun Kim, Boeun Lee, Jay H. Korea Adv Inst Sci & Technol KAIST Dept Chem & Biomol Engn 291 Daehak Ro Daejeon 34141 South Korea Princeton Univ Andlinger Ctr Energy & Environm Princeton NJ 08544 USA
This study presents a novel multi-step lookahead bayesian optimization method which strives for optimal active learning by balancing exploration and exploitation over multiple future sampling-evaluation trials. The ap... 详细信息
来源: 评论