The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra...
详细信息
The accuracy of assigning fluorophore identity and abundance, known as spectral unmixing, in biological fluorescence microscopy images remains a significant challenge due to the substantial overlap in emission spectra among fluorophores. In traditional laser scanning confocal spectral microscopy, fluorophore information is acquired by recording emission spectra with a single combination of discrete excitation wavelengths. However, organic fluorophores possess characteristic excitation spectra in addition to their unique emission spectral signatures. In this paper, we propose a generalized multi-view machine learning approach that leverages both excitation and emission spectra to significantly improve the accuracy in differentiating multiple highly overlapping fluorophores in a single image. By recording emission spectra of the same field with multiple combinations of excitation wavelengths, we obtain data representing different views of the underlying fluorophore distribution in the sample. We then propose a multi-view machine learning framework that allows for the flexible incorporation of noise information and abundance constraints, enabling the extraction of spectral signatures from reference images and efficient recovery of corresponding abundances in unknown mixed images. Numerical experiments on simulated image data demonstrate the method's efficacy in improving accuracy, allowing for the discrimination of 100 fluorophores with highly overlapping spectra. Furthermore, validation on images of mixtures of fluorescently labeled Escherichia coli highlights the power of the proposed multi-view strategy in discriminating fluorophores with spectral overlap in real biological images.
In the evasion attacks against deep neural networks (DNN), the attacker generates adversarial instances that are visually indistinguishable from benign samples and sends them to the target DNN to trigger misclassifica...
详细信息
ISBN:
(纸本)9781450385794
In the evasion attacks against deep neural networks (DNN), the attacker generates adversarial instances that are visually indistinguishable from benign samples and sends them to the target DNN to trigger misclassifications. In this paper, we propose a novel multi-view adversarial image detector, namely Argos, based on a novel observation. That is, there exist two "souls" in an adversarial instance, i.e., the visually unchanged content, which corresponds to the true label, and the added invisible perturbation, which corresponds to the misclassified label. Such inconsistencies could be further amplified through an autoregressive generative approach that generates images with seed pixels selected from the original image, a selected label, and pixel distributions learned from the training data. The generated images (i.e., the "views") will deviate significantly from the original one if the label is adversarial, demonstrating inconsistencies that Argos expects to detect. To this end, Argos first amplifies the discrepancies between the visual content of an image and its misclassified label induced by the attack using a set of regeneration mechanisms and then identifies an image as adversarial if the reproduced views deviate to a preset degree. Our experimental results show that Argos significantly outperforms two representative adversarial detectors in both detection accuracy and robustness against six well-known adversarial attacks. Code is available at: https://***/sohaib730/Argos-Adversarial_Detection
Gaussian process dynamical systems (GPDSs) have shown their effectiveness in many tasks of machinelearning. However, when they address multi-view data, current GPDSs do not explicitly model the dependence between pri...
详细信息
Gaussian process dynamical systems (GPDSs) have shown their effectiveness in many tasks of machinelearning. However, when they address multi-view data, current GPDSs do not explicitly model the dependence between private and shared latent variables. Instead, they introduce structurally and intrinsically discrete segmentation in the latent space. In this paper, we propose the multi-view collaborative Gaussian process dynamical systems (McGPDSs) model, which assumes that the private latent variable for each view is controlled by its dynamical prior and the shared latent variable. The relevance between private and shared latent variables can be automatically learned by optimization in the Bayesian framework. The model is capable of learning an effective latent representation and generating novel data of one view given data of the other view. We evaluate our model on two-view data sets, and our model obtains better performance compared with the state-of-the-art multi-view GPDSs.
Gaussian process dynamical systems (GPDSs) have shown their effectiveness in many tasks of machinelearning. However, when they address multi-view data, current GPDSs do not explicitly model the dependence between pri...
详细信息
Gaussian process dynamical systems (GPDSs) have shown their effectiveness in many tasks of machinelearning. However, when they address multi-view data, current GPDSs do not explicitly model the dependence between private and shared latent variables. Instead, they introduce structurally and intrinsically discrete segmentation in the latent space. In this paper, we propose the multi-view collaborative Gaussian process dynamical systems (McGPDSs) model, which assumes that the private latent variable for each view is controlled by its dynamical prior and the shared latent variable. The relevance between private and shared latent variables can be automatically learned by optimization in the Bayesian framework. The model is capable of learning an effective latent representation and generating novel data of one view given data of the other view. We evaluate our model on two-view data sets, and our model obtains better performance compared with the state-of-the-art multi-view GPDSs.
暂无评论