咨询与建议

限定检索结果

文献类型

  • 4 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 8 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 8 篇 工学
    • 6 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 软件工程

主题

  • 8 篇 multi-view objec...
  • 1 篇 3d metrology
  • 1 篇 epipolar geometr...
  • 1 篇 broiler welfare
  • 1 篇 branch-and-bound...
  • 1 篇 multi-view objec...
  • 1 篇 hough decision t...
  • 1 篇 x-ray image benc...
  • 1 篇 security inspect...
  • 1 篇 local features
  • 1 篇 multi-view class...
  • 1 篇 x-ray imaging fo...
  • 1 篇 feature fusion
  • 1 篇 re-identificatio...
  • 1 篇 3d multi-class s...
  • 1 篇 sparse coding
  • 1 篇 transfer vote
  • 1 篇 structured learn...
  • 1 篇 hbm failure anal...
  • 1 篇 3d semi-supervis...

机构

  • 1 篇 turgut ozal univ...
  • 1 篇 astar i2r
  • 1 篇 univ rey juan ca...
  • 1 篇 astar inst micro...
  • 1 篇 univ politecn ma...
  • 1 篇 natl univ singap...
  • 1 篇 univ sci & techn...
  • 1 篇 univ surrey ctr ...
  • 1 篇 shenzhen polytec...
  • 1 篇 astar artificial...
  • 1 篇 nanjing univ nat...
  • 1 篇 seoul natl univ ...
  • 1 篇 univ ghent imec ...

作者

  • 1 篇 park sola
  • 1 篇 yi feifan
  • 1 篇 xun xu
  • 1 篇 lee hyuk-jae
  • 1 篇 choong chong ser
  • 1 篇 zhang haigang
  • 1 篇 rao vempati srin...
  • 1 篇 baumela luis
  • 1 篇 leroux sam
  • 1 篇 zhao ziyuan
  • 1 篇 wu modi
  • 1 篇 yang seungjin
  • 1 篇 guillemaut jean-...
  • 1 篇 yang jinfeng
  • 1 篇 buenaposada jose...
  • 1 篇 ouyang xinyu
  • 1 篇 yuan zehuan
  • 1 篇 simoens pieter
  • 1 篇 zhang yue
  • 1 篇 pahwa ramanpreet...

语言

  • 8 篇 英文
检索条件"主题词=Multi-view object detection"
8 条 记 录,以下是1-10 订阅
排序:
A New Approach Combining Trained Single-view Networks with multi-view Constraints for Robust multi-view object detection and Labelling  15
A New Approach Combining Trained Single-view Networks with M...
收藏 引用
15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP) / 15th International Conference on Computer Vision Theory and Applications (VISAPP)
作者: Zhang, Yue Hilton, Adrian Guillemaut, Jean-Yves Univ Surrey Ctr Vis Speech & Signal Proc CVSSP Guildford Surrey England
We propose a multi-view framework for joint object detection and labelling based on pairs of images. The proposed framework extends the single-view Mask R-CNN approach to multiple views without need for additional tra... 详细信息
来源: 评论
Learning discriminated and correlated patches for multi-view object detection using sparse coding
收藏 引用
PATTERN RECOGNITION 2017年 69卷 26-38页
作者: Yuan, Zehuan Lu, Tong Tan, Chew Lim Nanjing Univ Natl Key Lab Novel Software Technol Nanjing Jiangsu Peoples R China Natl Univ Singapore Sch Comp Singapore Singapore
multi-view object detection is an open and challenging problem due to its inherent intra-class variability among discrete viewpoints. This paper aims to perform multi-view object detection by learning discriminated an... 详细信息
来源: 评论
multi-view object detection in dual-energy X-ray images
收藏 引用
MACHINE VISION AND APPLICATIONS 2015年 第7-8期26卷 1045-1060页
作者: Bastan, Muhammet Turgut Ozal Univ Dept Comp Engn Ankara Turkey
Automatic inspection of X-ray scans at security checkpoints can improve the public security. X-ray images are different from photographic images. They are transparent. They contain much less texture. They may be highl... 详细信息
来源: 评论
MVDet: multi-view multi-class object detection without ground plane assumption
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2023年 第3期26卷 1059-1070页
作者: Park, Sola Yang, Seungjin Lee, Hyuk-Jae Seoul Natl Univ Dept ECE 1 Gwanak Ro Seoul 08826 South Korea
Although many state-of-the-art methods of object detection in a single image have achieved great success in the last few years, they still suffer from the false positives in crowd scenes of the real-world applications... 详细信息
来源: 评论
Label Efficient Lifelong multi-view Broiler detection
Label Efficient Lifelong Multi-View Broiler Detection
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Cardoen, Thorsten Leroux, Sam Simoens, Pieter Univ Ghent IMEC IDLab Dept Informat & Technol Ghent Belgium
Broiler localization is crucial for welfare monitoring, particularly in identifying issues such as wet litter. We focus on multi-camera detection systems since multiple viewpoints not only ensure comprehensive pen cov... 详细信息
来源: 评论
3D Defect detection and Metrology of HBMs using Semi-Supervised Deep Learning  73
3D Defect Detection and Metrology of HBMs using Semi-Supervi...
收藏 引用
IEEE 73rd Electronic Components and Technology Conference (ECTC)
作者: Pahwa, Ramanpreet Singh Chang, Richard Jie, Wang Zhao Ziyuan Cai Lile Xun, Xu Sheng, Foo Chuan Choong, Chong Ser Rao, Vempati Srinivasa ASTAR I2R Singapore Singapore ASTAR Artificial Intelligence Analyt & Informat AI3 Singapore Singapore ASTAR Inst Microelect IME Singapore Singapore
3D Deep Learning has made tremendous progress recently and is being widely used in various fields, such as medical imaging, robotics, and autonomous vehicle driving, to identify and segment various structures. In this... 详细信息
来源: 评论
Dualray: Dual-view X-ray Security Inspection Benchmark and Fusion detection Framework  5th
Dualray: Dual-View X-ray Security Inspection Benchmark and F...
收藏 引用
5th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
作者: Wu, Modi Yi, Feifan Zhang, Haigang Ouyang, Xinyu Yang, Jinfeng Shenzhen Polytech Inst Appl Artificial Intelligence Guangdong Hong Shenzhen 518055 Guangdong Peoples R China Univ Sci & Technol Liaoning Sch Elect & Informat Engn Anshan 114045 Liaoning Peoples R China
Prohibited item detection in X-ray security inspection images using computer vision technology is a challenging task in real world scenarios due to various factors, include occlusion and unfriendly imaging viewing ang... 详细信息
来源: 评论
BAdaCost: multi-class Boosting with Costs
收藏 引用
PATTERN RECOGNITION 2018年 79卷 467-479页
作者: Fernandez-Baldera, Antonio Buenaposada, Jose M. Baumela, Luis Univ Politecn Madrid ETSI Informat Campus Montegancedo S-N Boadilla Del Monte 28660 Spain Univ Rey Juan Carlos ETSII C Tulipan S-N Mostoles 28933 Spain
We present BAdaCost, a multi-class cost-sensitive classification algorithm. It combines a set of cost sensitive multi-class weak learners to obtain a strong classification rule within the Boosting framework. To derive... 详细信息
来源: 评论