Benefiting from the flexible, scalable and secure environment, hybrid cloud can overcome the shortage of limited resources in private cloud to simultaneously execute large-scale scientific workflows. In hybrid cloud, ...
详细信息
Benefiting from the flexible, scalable and secure environment, hybrid cloud can overcome the shortage of limited resources in private cloud to simultaneously execute large-scale scientific workflows. In hybrid cloud, privacy-sensitive tasks are not allowed to be executed on public resources, while non-sensitive tasks are unrestricted. As an NP-Complete problem, it is extraordinarily challenging to schedule multiple workflows efficiently, economically and energy-savingly under quality-of-service constraints. This paper models the hybrid-cloud-based privacy-aware multi-workflow scheduling as a tri-objective optimization problem that optimizes workflow-oriented total tardiness, private-cloud-oriented total energy consumption, and public -cloud-oriented total monetary cost. To the best of authors' knowledge, few studies have been conducted on the tri-objective privacy-aware multi-workflow scheduling in hybrid cloud (PMWS-HC). To solve this problem, we dissect various factors involved during task scheduling and devise a novel Heuristic scheduling Algorithm based on 9 Factors (HSA9Fs), which dynamically selects the workflows and tasks to be scheduled, and the corresponding VMs to execute them. To optimize the three conflicting objectives simultaneously, we propose a nested algorithm called MSIA, which first employs a multi-objective Salp swarm algorithm to explore for the Pareto solutions, and then uses an Iterative greedy Algorithm to perform a refined search on individuals to obtain high-quality solutions. Extensive Medium-Small-Scale and Large-Scale simulation experiments show that both HSA9Fs and MSIA outperform state-of-the-art scheduling algorithms in several multi-objective performance metrics.
Distributed computing, such as cloud computing, provides promising platforms for orchestrating scientific workflows' tasks based on their sequences and dependencies. workflowscheduling plays an important role in ...
详细信息
Distributed computing, such as cloud computing, provides promising platforms for orchestrating scientific workflows' tasks based on their sequences and dependencies. workflowscheduling plays an important role in optimizing concerned objectives for distributed computing, such as minimizing the makespan and cost. Many researchers have focused on optimizing a specific single workflow with multiple objectives. Currently, there are few studies on multi-workflow scheduling, with most research focusing on objectives such as cost and makespan. However, multi-workflow scheduling requires the design of specific objectives that reflect the unique characteristics of multiple workflows. On the other hand, clustering-based approaches have garnered significant attention in the field of workflowscheduling over distributed computing resources due to their advantage in reducing data communication among tasks. Despite this, the effectiveness of clustering-based algorithms has not been extensively studied and validated in the context of multi-objective multi-workflow scheduling models. Motivated by these factors, we propose an approach for multiple workflows' multi-objective optimization (MOO), considering the new defined metric, fairness. We first mathematically formulate the fairness and define a fairness- involved MOO model. Then, we propose an advanced clustering-based resource optimization strategy in multiple workflow runs. Experimental results show that the proposed approach performs better than the compared algorithms without significant compromise of the overall makespan and cost as well as individual fairness, which can guide the simulation workflowscheduling on clouds.
With the development of cloud computing, a growing number of workflows are deployed on cloud platform that can dynamically provides cloud resources on demand for users. In clouds, one basic problem is how to schedule ...
详细信息
With the development of cloud computing, a growing number of workflows are deployed on cloud platform that can dynamically provides cloud resources on demand for users. In clouds, one basic problem is how to schedule workflow for minimizing the execution cost and the workflow completion time. Aiming at the problem that the maximum completion time and cost of multiple workflows are too high, this paper proposes a model of dynamic multi-workflow scheduling in cloud environment and a new scheduling algorithm which is named as MT (multi-workflow scheduling technology). In MT, the heterogeneity of resources is considered when calculating the priority of tasks. Then, the technique for order of preference by similarity to ideal solution (TOPSIS) method is used to rank the resources when selecting resources for tasks. Finally, MT takes the estimated minimum completion time of the workflow and the cost of the task as two attribute indexes in TOPSIS decision matrix. Also, it uses a fixed reference point instead of calculating ideal solution, which ensures the uniqueness of the evaluation criteria when there is a change in the number of resources. Simulation experiments are illustrated to verify the effectiveness of the proposed algorithm in reducing the maximum completion time and cost of multiple workflows. Compared with the state-of-the-art methods, the maximum completion time and cost can be reduced by at most 17 and 9%, respectively.
暂无评论