咨询与建议

限定检索结果

文献类型

  • 2 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 3 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3 篇 工学
    • 3 篇 计算机科学与技术...
    • 1 篇 电气工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 软件工程

主题

  • 3 篇 multimodal humor...
  • 2 篇 multimodal senti...
  • 2 篇 multimodal repre...
  • 1 篇 multimodal fusio...
  • 1 篇 sarcasm detectio...
  • 1 篇 contrastive lear...
  • 1 篇 foundation model...
  • 1 篇 multimodal emoti...
  • 1 篇 correlation lear...
  • 1 篇 benchmark

机构

  • 2 篇 sun yat sen univ...
  • 1 篇 college of compu...
  • 1 篇 btech robotics c...
  • 1 篇 shenzhen researc...

作者

  • 2 篇 zeng ying
  • 2 篇 hu haifeng
  • 2 篇 mai sijie
  • 1 篇 wang donghao
  • 1 篇 sun ya
  • 1 篇 huang dong-yan
  • 1 篇 zhang zixing
  • 1 篇 dong zhongren
  • 1 篇 chen ciqiang

语言

  • 3 篇 英文
检索条件"主题词=Multimodal Humor Detection"
3 条 记 录,以下是1-10 订阅
排序:
MHSDB: A Comprehensive Benchmark for multimodal humor and Sarcasm detection Leveraging Foundation Models
MHSDB: A Comprehensive Benchmark for Multimodal Humor and Sa...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Dong, Zhongren Wang, Donghao Chen, Ciqiang Huang, Dong-Yan Zhang, Zixing College of Computer Science and Electronic Engineering Hunan University China Shenzhen Research Institute Hunan University China BTECH Robotics Corp China
Understanding multimodal humor and sarcasm detection remains a key challenge in artificial intelligence. Despite recent advances, inconsistencies in feature extraction, evaluation methods, and experimental setups have... 详细信息
来源: 评论
Excavating multimodal correlation for representation learning
收藏 引用
INFORMATION FUSION 2023年 91卷 542-555页
作者: Mai, Sijie Sun, Ya Zeng, Ying Hu, Haifeng Sun Yat Sen Univ Sch Elect & Informat Technol Guangzhou 510006 Guangdong Peoples R China
A majority of previous methods for multimodal representation learning ignore the rich correlation information inherently stored in each sample, leading to a lack of robustness when trained on small datasets. Although ... 详细信息
来源: 评论
Learning from the global view: Supervised contrastive learning of multimodal representation
收藏 引用
INFORMATION FUSION 2023年 第1期100卷
作者: Mai, Sijie Zeng, Ying Hu, Haifeng Sun Yat Sen Univ Sch Elect & Informat Technol Guangzhou 510006 Guangdong Peoples R China
The development of technology enables the availability of abundant multimodal data, which can be utilized in many representation learning tasks. However, most methods ignore the rich modality correlation information s... 详细信息
来源: 评论