咨询与建议

限定检索结果

文献类型

  • 27 篇 会议
  • 25 篇 期刊文献

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 40 篇 工学
    • 31 篇 计算机科学与技术...
    • 9 篇 电气工程
    • 4 篇 机械工程
    • 3 篇 信息与通信工程
    • 3 篇 土木工程
    • 2 篇 材料科学与工程(可...
    • 2 篇 建筑学
    • 2 篇 生物医学工程(可授...
    • 1 篇 仪器科学与技术
    • 1 篇 控制科学与工程
    • 1 篇 石油与天然气工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 城乡规划学
  • 13 篇 医学
    • 7 篇 基础医学(可授医学...
    • 6 篇 临床医学
    • 1 篇 口腔医学
    • 1 篇 公共卫生与预防医...
    • 1 篇 特种医学
    • 1 篇 护理学(可授医学、...
  • 9 篇 管理学
    • 5 篇 公共管理
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 5 篇 理学
    • 4 篇 物理学
    • 2 篇 化学
    • 1 篇 地理学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 艺术学
    • 1 篇 美术学

主题

  • 52 篇 multimodal large...
  • 9 篇 large language m...
  • 5 篇 artificial intel...
  • 3 篇 generative ai
  • 2 篇 generative desig...
  • 2 篇 gpt-4
  • 2 篇 multimodal learn...
  • 2 篇 generative artif...
  • 2 篇 human-ai interac...
  • 2 篇 deep learning
  • 2 篇 llms
  • 2 篇 natural language...
  • 2 篇 visual question ...
  • 2 篇 gpt-4v
  • 2 篇 vision and langu...
  • 2 篇 chatgpt
  • 2 篇 machine learning
  • 2 篇 context modeling
  • 2 篇 large multimodal...
  • 1 篇 physics-based re...

机构

  • 2 篇 chinese univ hon...
  • 2 篇 shanghai artific...
  • 2 篇 sun yat sen univ...
  • 1 篇 guangdong key la...
  • 1 篇 univ waterloo wa...
  • 1 篇 google res ca 94...
  • 1 篇 department of or...
  • 1 篇 sun yat sen univ...
  • 1 篇 zhejiang univ te...
  • 1 篇 department of co...
  • 1 篇 univ granada gra...
  • 1 篇 school of comput...
  • 1 篇 natl & kapodistr...
  • 1 篇 tech univ munich...
  • 1 篇 samsung r&d inst...
  • 1 篇 zhejiang univ co...
  • 1 篇 hokkaido univ da...
  • 1 篇 east china norma...
  • 1 篇 nanchang univ ar...
  • 1 篇 chinese univ hon...

作者

  • 2 篇 zhong shu
  • 2 篇 akrout mohamed
  • 1 篇 liang hao
  • 1 篇 yan zhiyuan
  • 1 篇 cirone katrina d...
  • 1 篇 martin-fernandez...
  • 1 篇 kumar sidharth
  • 1 篇 cun xiaodong
  • 1 篇 pang ning
  • 1 篇 sheikh javaid
  • 1 篇 yan hanbing
  • 1 篇 cucchiara rita
  • 1 篇 kiamilev fouad
  • 1 篇 aizawa kiyoharu
  • 1 篇 yamakata yoko
  • 1 篇 elmallah raley
  • 1 篇 hormozdiari farh...
  • 1 篇 li xin
  • 1 篇 panagoulias dimi...
  • 1 篇 huang rui

语言

  • 50 篇 英文
  • 2 篇 其他
检索条件"主题词=Multimodal Large Language Models"
52 条 记 录,以下是1-10 订阅
排序:
A Causality-Aware Paradigm for Evaluating Creativity of multimodal large language models
收藏 引用
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2025年 第5期47卷 3830-3846页
作者: Huang, Zhongzhan Zhong, Shanshan Zhou, Pan Gao, Shanghua Zitnik, Marinka Lin, Liang Sun Yat Sen Univ Guangzhou 510275 Peoples R China Singapore Management Univ Singapore 188065 Singapore Harvard Univ Cambridge MA 02138 USA Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510275 Peoples R China Guangdong Key Lab Big Data Anal & Proc Guangzhou 510275 Peoples R China Peng Cheng Lab Shenzhen 518108 Peoples R China
Recently, numerous benchmarks have been developed to evaluate the logical reasoning abilities of large language models (LLMs). However, assessing the equally important creative capabilities of LLMs is challenging due ... 详细信息
来源: 评论
LLM4CAD: multimodal large language models for Three-Dimensional Computer-Aided Design Generation
收藏 引用
JOURNAL OF COMPUTING AND INFORMATION SCIENCE IN ENGINEERING 2025年 第2期25卷 021005页
作者: Li, Xingang Sun, Yuewan Sha, Zhenghui Univ Texas Austin Walker Dept Mech Engn Austin TX 78712 USA
The evolution of multimodal large language models (LLMs) capable of processing diverse input modalities (e.g., text and images) holds new prospects for their application in engineering design, such as the generation o... 详细信息
来源: 评论
Exploring the prospects of multimodal large language models for Automated Emotion Recognition in education: Insights from Gemini
收藏 引用
COMPUTERS & EDUCATION 2025年 232卷
作者: Yu, Shuzhen Androsov, Alexey Yan, Hanbing East China Normal Univ Dept Educ Informat Technol Shanghai 200062 Peoples R China Xian Eurasia Univ Sch Humanities & Educ Xian 710065 Peoples R China East China Normal Univ Sch Open Learning & Educ Shanghai 200062 Peoples R China
Emotions play a pivotal role in daily judgments and decision-making, particularly in educational settings, where understanding and responding to learners' emotions is essential for personalized learning. While the... 详细信息
来源: 评论
(In)forming the new building envelope: A pedagogical study in generative design with precedents and multimodal large language models
收藏 引用
INTERNATIONAL JOURNAL OF ARCHITECTURAL COMPUTING 2025年 第1期23卷 96-121页
作者: Veloso, Pedro Univ Arkansas Dept Architecture Fayetteville AR USA
This pedagogical study delves into integrating established and emerging computational methods into architectural education, with a specific focus on building envelope design within a ***. course. Students employ param... 详细信息
来源: 评论
Explore the Textual Perception Ability on the Images for multimodal large language models  13th
Explore the Textual Perception Ability on the Images for Mul...
收藏 引用
13th International Conference on Natural language Processing and Chinese Computing
作者: Kuang, Jiayi Ouyang, Jiarui Shen, Ying Sun Yat Sen Univ Guangzhou Guangdong Peoples R China
Chinese Spell Checking or Chinese Spelling Correction (CSC) in writing assistants has significantly enhanced users' text quality. multimodal CSC expands this task into the multimodal domain and introduces a new re... 详细信息
来源: 评论
FoodMLLM-JP: Leveraging multimodal large language models for Japanese Recipe Generation  31st
FoodMLLM-JP: Leveraging Multimodal Large Language Models for...
收藏 引用
31st International Conference on Multimedia Modeling
作者: Imajuku, Yuki Yamakata, Yoko Aizawa, Kiyoharu Univ Tokyo Tokyo Japan
Research on food image understanding using recipe data has been a long-standing focus due to the diversity and complexity of the data. Moreover, food is inextricably linked to people's lives, making it a vital res... 详细信息
来源: 评论
CalorieVoL: Integrating Volumetric Context Into multimodal large language models for Image-Based Calorie Estimation  31st
CalorieVoL: Integrating Volumetric Context Into Multimodal L...
收藏 引用
31st International Conference on Multimedia Modeling
作者: Tanabe, Hikaru Yanai, Keiji Univ Electrocommun Chofu Tokyo Japan
multimodal large language models (MLLMs) can perform various food-related tasks with high quality. Notably, high-performance MLLMs, such as GPT-4V, can even estimate caloric content from food images. However, these ML... 详细信息
来源: 评论
Leveraging multimodal large language models for Enhanced Learning and Application in Building Energy Modeling  9th
Leveraging Multimodal Large Language Models for Enhanced Lea...
收藏 引用
9th International Building Physics Conference
作者: Labib, Rania Prairie View A&M Univ Prairie View TX 77446 USA
This paper presents a novel application of multimodal large language models (LLMs) to enhance the learning and application of building energy modeling. The study leverages Retrieval-Augmented Generation (RAG) models i... 详细信息
来源: 评论
Exploring the Implicit Semantic Ability of multimodal large language models: A Pilot Study on Entity Set Expansion
Exploring the Implicit Semantic Ability of Multimodal Large ...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Wang, Hebin Li, Yangning Li, Yinghui Zheng, Hai-Tao Jiang, Wenhao Kim, Hong-Gee Shenzhen International Graduate School Tsinghua University China Shenzhen International Graduate School Tsinghua University Peng Cheng Laboratory China China Seoul National University Korea Republic of
The rapid development of multimodal large language models (MLLMs) has brought significant improvements to a wide range of tasks in real-world applications. However, LLMs still exhibit certain limitations in extracting... 详细信息
来源: 评论
Exploring the Role of CLIP Global Visual Features in multimodal large language models
Exploring the Role of CLIP Global Visual Features in Multimo...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Bai, Zixing Bai, Yuting School of Computer Science and Technology Fudan University Shanghai China
The next recognized development direction of large language models (LLMs) is to integrate and enhance multimodal capability. Although current multimodal large language models (MLLMs) have achieved impressive performan... 详细信息
来源: 评论