咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 材料科学与工程(可...
    • 1 篇 土木工程

主题

  • 1 篇 multiple express...
  • 1 篇 blended cement c...
  • 1 篇 machine learning
  • 1 篇 gene expression ...

机构

  • 1 篇 hohai univ dept ...
  • 1 篇 gik inst engn sc...
  • 1 篇 jadara univ res ...
  • 1 篇 king saud univ c...
  • 1 篇 western caspian ...
  • 1 篇 appl sci private...
  • 1 篇 north minzu univ...
  • 1 篇 unhcr kabul afgh...

作者

  • 1 篇 el hindi khalil
  • 1 篇 el-meligy mohamm...
  • 1 篇 ullah irfan
  • 1 篇 fu bo
  • 1 篇 javed muhammad f...
  • 1 篇 ahmad furqan
  • 1 篇 lei hua

语言

  • 1 篇 英文
检索条件"主题词=Multiple expression programming"
1 条 记 录,以下是1-10 订阅
排序:
Predictive modeling for durability characteristics of blended cement concrete utilizing machine learning algorithms
收藏 引用
CASE STUDIES IN CONSTRUCTION MATERIALS 2025年 22卷
作者: Fu, Bo Lei, Hua Ullah, Irfan El-Meligy, Mohammed El Hindi, Khalil Javed, Muhammad Faisal Ahmad, Furqan North Minzu Univ Coll Civil Engn Yinchuan 750021 Peoples R China Hohai Univ Dept Civil & Transportat Engn Nanjing Peoples R China Appl Sci Private Univ Appl Sci Res Ctr Amman Jordan Jadara Univ Res Ctr POB 733 Irbid Jordan King Saud Univ Coll Comp & Informat Sci Dept Comp Sci Riyadh 11543 Saudi Arabia GIK Inst Engn Sci & Technol Dept Civil Engn Swabi 23640 Pakistan Western Caspian Univ Baku Azerbaijan UNHCR Kabul Afghanistan
Chloride penetration and carbonation resistance are critical durability attributes that assess concrete's ability to withstand challenging environmental conditions. However, determining these parameters requires t... 详细信息
来源: 评论