咨询与建议

限定检索结果

文献类型

  • 55 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 61 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 58 篇 工学
    • 27 篇 电气工程
    • 24 篇 计算机科学与技术...
    • 9 篇 仪器科学与技术
    • 9 篇 测绘科学与技术
    • 9 篇 生物医学工程(可授...
    • 7 篇 信息与通信工程
    • 6 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 4 篇 软件工程
    • 2 篇 机械工程
    • 2 篇 电子科学与技术(可...
    • 2 篇 化学工程与技术
    • 1 篇 力学(可授工学、理...
    • 1 篇 建筑学
    • 1 篇 土木工程
    • 1 篇 地质资源与地质工...
    • 1 篇 船舶与海洋工程
  • 20 篇 医学
    • 13 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 2 篇 特种医学
  • 18 篇 理学
    • 8 篇 地球物理学
    • 3 篇 生物学
    • 2 篇 物理学
    • 2 篇 化学
    • 2 篇 地理学
    • 1 篇 数学
    • 1 篇 海洋科学
    • 1 篇 地质学
    • 1 篇 生态学
  • 4 篇 农学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...

主题

  • 61 篇 multiscale convo...
  • 14 篇 feature extracti...
  • 14 篇 attention mechan...
  • 8 篇 deep learning
  • 8 篇 convolution
  • 5 篇 residual network
  • 4 篇 transfer learnin...
  • 4 篇 feature fusion
  • 4 篇 training
  • 3 篇 fault diagnosis
  • 3 篇 channel attentio...
  • 3 篇 data mining
  • 3 篇 remote sensing
  • 3 篇 kernel
  • 2 篇 image enhancemen...
  • 2 篇 task analysis
  • 2 篇 image restoratio...
  • 2 篇 force
  • 2 篇 pancreas segment...
  • 2 篇 neural networks

机构

  • 2 篇 chongqing univ c...
  • 2 篇 chinese peoples ...
  • 2 篇 xidian univ sch ...
  • 2 篇 chinese peoples ...
  • 2 篇 chongqing univ p...
  • 2 篇 winona state uni...
  • 2 篇 capital normal u...
  • 2 篇 lanzhou jiaotong...
  • 1 篇 beijing inst tec...
  • 1 篇 xinjiang univ sc...
  • 1 篇 silesian tech un...
  • 1 篇 natl univ coll c...
  • 1 篇 yancheng teacher...
  • 1 篇 yanshan univ col...
  • 1 篇 pla strateg supp...
  • 1 篇 shandong univ te...
  • 1 篇 chapman univ dal...
  • 1 篇 taiyuan univ tec...
  • 1 篇 liaoning normal ...
  • 1 篇 shanghai univ sc...

作者

  • 2 篇 guo kaiwen
  • 2 篇 zhao ming
  • 2 篇 jiang hongzhen
  • 2 篇 xia likun
  • 2 篇 ding rui
  • 2 篇 wang yang
  • 2 篇 xi wei
  • 2 篇 xie yixuan
  • 2 篇 wang lu
  • 2 篇 jiao licheng
  • 2 篇 li weisheng
  • 2 篇 li feiyan
  • 2 篇 qin sheng
  • 2 篇 li linhao
  • 2 篇 wang jianing
  • 2 篇 ma ming
  • 2 篇 zhang chaoran
  • 2 篇 huang runhu
  • 2 篇 guo siying
  • 1 篇 yang junjie

语言

  • 61 篇 英文
  • 1 篇 德文
检索条件"主题词=Multiscale convolution"
61 条 记 录,以下是1-10 订阅
排序:
Intelligent Fault Diagnosis Method for Shearer Rocker Gear Based on Swin Transformer and multiscale convolution Parallel Integration
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2025年 74卷
作者: Sun, Xiaochun Ding, Hua Li, Ning Dong, Xiaoxin Sun, Jiacheng Zheng, Guangyu Taiyuan Univ Technol Coll Mech & Vehicle Engn Shanxi Key Lab Fully Mechanized Coal Min Equipment Taiyuan 030024 Peoples R China
In the harsh underground environment, the transmission gear in the rocker arm of the shearer is susceptible to impact load, frequently leading to failures that result in economic losses or casualties. Therefore, real-... 详细信息
来源: 评论
FLANet: A multiscale temporal convolution and spatial-spectral attention network for EEG artifact removal with adversarial training
收藏 引用
JOURNAL OF NEURAL ENGINEERING 2025年 第1期22卷
作者: Wang, Junkongshuai Luo, Yangjie Wang, Haoran Wang, Lu Zhang, Lihua Gan, Zhongxue Kang, Xiaoyang Fudan Univ Fudan Peoples R China Ji Hua Lab Foshan Peoples R China Fudan Univ Yiwu Res Inst Yiwu City Peoples R China Zhejiang Lab Res Ctr Intelligent Sensing Hangzhou Peoples R China
Objective. Denoising artifacts, such as noise from muscle or cardiac activity, is a crucial and ubiquitous concern in neurophysiological signal processing, particularly for enhancing the signal-to-noise ratio in elect... 详细信息
来源: 评论
Inter-patient ECG arrhythmia heartbeat classification network based on multiscale convolution and FCBA
收藏 引用
BIOMEDICAL SIGNAL PROCESSING AND CONTROL 2024年 90卷
作者: Zhou, Fei-yan Sun, Yu-hao Wang, Ya-wen Guangxi Normal Univ Minist Educ Key Lab Educ Blockchain & Intelligent Technol Guilin 541004 Peoples R China Guangxi Normal Univ Guangxi Key Lab Multisource Informat Min & Secur Guilin 541004 Peoples R China
Cardiac arrhythmias that can lead to sudden cardiac death are common. Electrocardiograms (ECGs) offer valuable information about cardiac status and play a crucial role in evaluating patients with arrhythmia in clinica... 详细信息
来源: 评论
multiscale Residual convolution Neural Network and Sector Descriptor-Based Road Detection Method
收藏 引用
IEEE ACCESS 2019年 7卷 173377-173392页
作者: Dai, Jiguang Du, Yang Zhu, Tingting Wang, Yang Gao, Lin Liaoning Tech Univ Sch Geomat Fuxin 12300 Peoples R China Natl Adm Surveying Mapping & Geoinformat Key Lab Natl Geog State Monitoring Wuhan 430079 Peoples R China
Road detection is a focus of research in the field of remote sensing image analysis. This task is normally difficult due to the complexity of the data, which are heterogeneous in appearance with large intra-class and ... 详细信息
来源: 评论
Multilevel Assessment of Exercise Fatigue Utilizing Multiple Attention and convolution Network (MACNet) Based on Surface Electromyography
收藏 引用
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING 2025年 33卷 243-254页
作者: Zhang, Guofu Yang, Banghua Zan, Peng Zhang, Dingguo Shanghai Univ Sch Mechatron Engn & Automat Shanghai 200444 Peoples R China Univ Bath Dept Elect & Elect Engn Bath BA2 7AY England
Background: Assessment of exercise fatigue is crucial for enhancing work capacity and minimizing the risk of injury. Surface electromyography (sEMG) has been used to quantitatively assess exercise fatigue as a new tec... 详细信息
来源: 评论
MDSCN: multiscale depthwise separable convolutional network for underwater graphics restoration
收藏 引用
VISUAL COMPUTER 2025年 第3期41卷 1999-2010页
作者: Li, Shiyu Liu, Zehao Gao, Meijing Bai, Yang Yin, Haozheng Yanshan Univ Coll Informat Sci & Engn Key Lab Special Fiber & Fiber Sensor Hebei Prov Qinhuangdao 066004 Hebei Peoples R China Beijing Inst Technol Coll Informat & Elect Beijing 100081 Peoples R China Beijing Inst Technol Tangshan Res Inst Tangshan 063000 Peoples R China
Underwater imaging techniques have been a focus of research for computer vision. Underwater imaging frequently encounters challenges for poor image quality and slow restoration speed, thereby hindering human underwate... 详细信息
来源: 评论
DmADs-Net: dense multiscale attention and depth-supervised network for medical image segmentation
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS 2025年 第1期16卷 523-548页
作者: Fu, Zhaojin Li, Jinjiang Chen, Zheng Ren, Lu Shandong Technol & Business Univ Sch Comp Sci & Technol Yantai 264005 Peoples R China
Deep learning has made important contributions to the development of medical image segmentation. convolutional neural networks, as a crucial branch, have attracted strong attention from researchers. Through the tirele... 详细信息
来源: 评论
Lithology Identification of Imbalanced Well Log Data Based on Diffusion Model and multiscale CNN
收藏 引用
MATHEMATICAL GEOSCIENCES 2025年 1-22页
作者: Zhao, Fengda Zhao, Zhuoyi Lv, Hongjin Zhang, Pengwei Li, Xianshan Yanshan Univ Sch Informat Sci & Engn Qinhuangdao 066004 Hebei Peoples R China Xinjiang Univ Sci & Technol Sch Informat Sci & Engn Korla 841000 Xinjiang Peoples R China Yanshan Univ Key Lab Software Engn Hebei Prov Qinhuangdao 066004 Hebei Peoples R China
Lithology identification using well log data is a crucial part of geophysical reservoir characterization. However, lithologies have different proportions in geological formations, which means that an imbalance exists ... 详细信息
来源: 评论
Comprehensive feature integrated capsule network for Machinery fault diagnosis
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2025年 260卷
作者: Xing, Huangkun Jiang, Xingxing Song, Qiuyu Wang, Qian Liu, Jie Zhu, Zhongkui Soochow Univ Sch Rail Transportat Suzhou 215131 Peoples R China Soochow Univ Intelligent Urban Rail Engn Res Ctr Jiangsu Prov Suzhou 215131 Peoples R China Suzhou City Univ Sch Opt & Elect Informat Suzhou 215104 Peoples R China Huazhong Univ Sci & Technol Sch Civil & Hydraul Engn Wuhan 430074 Peoples R China
Deep transfer learning is widely used for intelligent fault diagnosis due to its advantage of transferring knowledge already learnt. However, existing models still suffer from following issues: the failure to fully co... 详细信息
来源: 评论
Dynamic Hierarchical convolutional Attention Network for Recognizing Motor Imagery Intention
收藏 引用
IEEE TRANSACTIONS ON CYBERNETICS 2025年 第5期55卷 2202-2212页
作者: Lu, Bin Wang, Fuwang Chen, Junxiang Wen, Guilin Hua, Changchun Fu, Rongrong Yanshan Univ Sch Elect Engn Qinhuangdao 066004 Peoples R China Northeast Elect Power Univ Sch Mech Engn Jilin 132012 Peoples R China Univ Pittsburgh Dept Biomed Informat Pittsburgh PA 15206 USA Yanshan Univ Sch Mech Engn Qinhuangdao 066004 Peoples R China
The neural activity patterns of localized brain regions are crucial for recognizing brain intentions. However, existing electroencephalogram (EEG) decoding models, especially those based on deep learning, predominantl... 详细信息
来源: 评论