咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献
  • 1 篇 会议

馆藏范围

  • 2 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 控制科学与工程

主题

  • 2 篇 reinforcement le...
  • 2 篇 mutation process...
  • 2 篇 multi-objective ...
  • 2 篇 evolutionary alg...
  • 2 篇 operator selecti...

机构

  • 1 篇 key laboratory o...
  • 1 篇 northeastern uni...
  • 1 篇 northeastern uni...
  • 1 篇 national frontie...
  • 1 篇 liaoning key lab...
  • 1 篇 northeastern uni...
  • 1 篇 liaoning enginee...
  • 1 篇 northeastern uni...

作者

  • 2 篇 yang yang
  • 1 篇 gongshu wang
  • 1 篇 lue tao
  • 1 篇 yun dong
  • 1 篇 su lijie
  • 1 篇 lijie su
  • 1 篇 wang gongshu
  • 1 篇 tao lue
  • 1 篇 dong yun

语言

  • 2 篇 英文
检索条件"主题词=Mutation Process Control"
2 条 记 录,以下是1-10 订阅
排序:
Reinforcement Learning for Dynamic mutation process control in Multi-Objective Differential Evolution  6
Reinforcement Learning for Dynamic Mutation Process Control ...
收藏 引用
6th IFAC Conference on Intelligent control and Automation Sciences (ICONS)
作者: Tao, Lue Wang, Gongshu Yang, Yang Dong, Yun Su, Lijie Northeastern Univ Minist Educ Key Lab Data Analyt & Optimizat Smart Ind Shenyang Peoples R China Northeastern Univ Natl Frontiers Sci Ctr Ind Intelligence & Syst Op Shenyang Peoples R China Northeastern Univ Liaoning Engn Lab Data Analyt & Optimizat Smart I Shenyang Peoples R China Northeastern Univ Liaoning Key Lab Mfg Syst & Logist Optimizat Shenyang Peoples R China
To improve the search performance of the multi-objective differential evolution algorithm, we use a reinforcement learning agent to control the dynamic mutation process. First, a novel multi-objective optimization fra... 详细信息
来源: 评论
Reinforcement Learning for Dynamic mutation process control in Multi-Objective Differential Evolution
收藏 引用
IFAC-PapersOnLine 2022年 第15期55卷 117-122页
作者: Lue Tao Gongshu Wang Yang Yang Yun Dong Lijie Su Key Laboratory of Data Analytics and Optimization for Smart Industry (Northeastern University) Ministry of Education China National Frontiers Science Center for Industrial Intelligence and Systems Optimization Northeastern University China Liaoning Engineering Laboratory of Data Analytics and Optimization for Smart Industry Northeastern University China Liaoning Key Laboratory of Manufacturing System and Logistics Optimization Northeastern University China
To improve the search performance of the multi-objective differential evolution algorithm, we use a reinforcement learning agent to control the dynamic mutation process. First, a novel multi-objective optimization fra... 详细信息
来源: 评论