咨询与建议

限定检索结果

文献类型

  • 16 篇 期刊文献
  • 6 篇 会议

馆藏范围

  • 22 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 21 篇 工学
    • 12 篇 计算机科学与技术...
    • 7 篇 控制科学与工程
    • 5 篇 电气工程
    • 2 篇 仪器科学与技术
    • 2 篇 航空宇航科学与技...
    • 1 篇 力学(可授工学、理...
    • 1 篇 动力工程及工程热...
    • 1 篇 信息与通信工程
    • 1 篇 软件工程
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 数学
    • 1 篇 物理学

主题

  • 22 篇 neural dynamic p...
  • 7 篇 reinforcement le...
  • 6 篇 approximate dyna...
  • 5 篇 adaptive dynamic...
  • 4 篇 neural networks
  • 4 篇 optimal control
  • 3 篇 learning control
  • 3 篇 adaptive critic ...
  • 2 篇 hamilton jacobi ...
  • 2 篇 adaptive critic ...
  • 2 篇 dynamic neural n...
  • 2 篇 actuators
  • 2 篇 neural network
  • 2 篇 neuro-dynamic pr...
  • 2 篇 wheeled mobile r...
  • 2 篇 intelligent cont...
  • 2 篇 proportional int...
  • 1 篇 helicopter trim
  • 1 篇 smart homes
  • 1 篇 autonomous land ...

机构

  • 3 篇 arizona state un...
  • 3 篇 univ illinois de...
  • 3 篇 rzeszow univ tec...
  • 2 篇 cimat guanajuato
  • 2 篇 chinese acad sci...
  • 2 篇 chinese acad sci...
  • 1 篇 natl univ def te...
  • 1 篇 northeastern uni...
  • 1 篇 department of au...
  • 1 篇 univ chinese aca...
  • 1 篇 th ingolstadt ai...
  • 1 篇 huazhong univ sc...
  • 1 篇 cent south univ ...
  • 1 篇 shanghai maritim...
  • 1 篇 department of au...
  • 1 篇 department of bi...
  • 1 篇 univ sydney fac ...
  • 1 篇 school of automa...
  • 1 篇 ipn cinvestav de...
  • 1 篇 shenzhen institu...

作者

  • 4 篇 liu derong
  • 3 篇 hendzel zenon
  • 3 篇 si j
  • 3 篇 szuster marcin
  • 3 篇 chairez isaac
  • 3 篇 poznyak alexande...
  • 3 篇 enns r
  • 2 篇 huang zhenhua
  • 2 篇 liu daxue
  • 2 篇 wei qinglai
  • 2 篇 boltyanski vladi...
  • 2 篇 ballesteros-esca...
  • 2 篇 wang ding
  • 2 篇 dai bin
  • 2 篇 zhu qi
  • 1 篇 liu dr
  • 1 篇 ma hongwen
  • 1 篇 salamat babak
  • 1 篇 burghardt andrze...
  • 1 篇 sun zhenping

语言

  • 19 篇 英文
  • 3 篇 其他
检索条件"主题词=Neural Dynamic Programming"
22 条 记 录,以下是11-20 订阅
排序:
Adaptive dynamic programming for Finite-Horizon Optimal Control of Discrete-Time Nonlinear Systems with ε-Error Bound
收藏 引用
IEEE TRANSACTIONS ON neural NETWORKS 2011年 第1期22卷 24-36页
作者: Wang, Fei-Yue Jin, Ning Liu, Derong Wei, Qinglai Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100190 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
In this paper, we study the finite-horizon optimal control problem for discrete-time nonlinear systems using the adaptive dynamic programming (ADP) approach. The idea is to use an iterative ADP algorithm to obtain the... 详细信息
来源: 评论
Adaptive dynamic programming for Control: A Survey and Recent Advances
收藏 引用
IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS 2021年 第1期51卷 142-160页
作者: Liu, Derong Xue, Shan Zhao, Bo Luo, Biao Wei, Qinglai Guangdong Univ Technol Sch Automat Guangzhou 510006 Peoples R China South China Univ Technol Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Beijing Normal Univ Sch Syst Sci Beijing 100875 Peoples R China Cent South Univ Sch Automat Changsha 410083 Peoples R China Peng Cheng Lab Shenzhen 518000 Peoples R China Chinese Acad Sci Inst Automat State Key Lab Management & Control Complex Syst Beijing 100190 Peoples R China Univ Chinese Acad Sci Beijing 100049 Peoples R China
This article reviews the recent development of adaptive dynamic programming (ADP) with applications in control. First, its applications in optimal regulation are introduced, and some skilled and efficient algorithms a... 详细信息
来源: 评论
Renewable Energy Management Using Action Dependent Heuristic dynamic programming
Renewable Energy Management Using Action Dependent Heuristic...
收藏 引用
IEEE International Smart Cities Conference (ISC2)
作者: Sterling, Gulnaz Tyler, Benjamin Nazarbayev Univ Dept Comp Sci Astana Kazakhstan
With increases in global energy demand and the rapid consumption of fossil fuels, the use of green energy and more efficient energy management approaches are receiving serious attention. Our focus is on improving ener... 详细信息
来源: 评论
State of the Art of Adaptive dynamic programming and Reinforcement Learning
收藏 引用
CAAI Artificial Intelligence Research 2022年 第2期1卷 93-110页
作者: Derong Liu Mingming Ha Shan Xue Department of Mechanical and Energy Engineering Southern University of Science and TechnologyShenzhen 518055China Department of Electrical and Computer Engineering University of Illinois at ChicagoIL 606071USA School of Automation and Electrical Engineering University of Science and Technology BeijingBeijing 100083China School of Computer Science and Engineering South China University of TechnologyGuangzhou 510006China
This article introduces the state-of-the-art development of adaptive dynamic programming and reinforcement learning(ADPRL).First,algorithms in reinforcement learning(RL)are introduced and their roots in dynamic progra... 详细信息
来源: 评论
Online Learning Control for Hybrid Electric Vehicle
收藏 引用
Chinese Journal of Mechanical Engineering 2012年 第1期25卷 98-106页
作者: LI Weimin XU Guoqing XU Yangsheng Department of Automation Shanghai Jiao Tong UniversityShanghai 200240China Shenzhen Institutes of Advanced Technology Chinese Academy of SciencesShenzhen 518055China Department of Mechanical and Automation Engineering The Chinese University of Hong KongHong KongChina
Improvements in hybrid electric vehicle (HEV) fuel economy and emissions heavily depend on an efficient energy management strategy (EMS). However, the uncertainty of future driving conditions generally cannot be easil... 详细信息
来源: 评论
A neural-network-based iterative GDHP approach for solving a class of nonlinear optimal control problems with control constraints
收藏 引用
neural COMPUTING & APPLICATIONS 2013年 第2期22卷 219-227页
作者: Wang, Ding Liu, Derong Zhao, Dongbin Huang, Yuzhu Zhang, Dehua Chinese Acad Sci Inst Automat Key Lab Complex Syst & Intelligence Sci Beijing 100190 Peoples R China Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA
In this paper, a novel neural-network-based iterative adaptive dynamic programming (ADP) algorithm is proposed. It aims at solving the optimal control problem of a class of nonlinear discrete-time systems with control... 详细信息
来源: 评论
Reinforcement-Based Robust Variable Pitch Control of Wind Turbines
收藏 引用
IEEE ACCESS 2020年 8卷 20493-20502页
作者: Chen, Peng Han, Dezhi Tan, Fuxiao Wang, Jun Shanghai Maritime Univ Dept Comp Sci & Technol Shanghai 200120 Peoples R China Univ Cent Florida Dept ECE Orlando FL 32816 USA
Due to the influence of wind speed disturbance, there are some uncertain phenomena in the parameters of the nonlinear wind turbine model with time in an actual working environment. In order to mitigate the side effect... 详细信息
来源: 评论
A self-learning call admission control scheme for CDMA cellular networks
收藏 引用
IEEE TRANSACTIONS ON neural NETWORKS 2005年 第5期16卷 1219-1228页
作者: Liu, DR Zhang, Y Zhang, HG Univ Illinois Dept Elect & Comp Engn Chicago IL 60607 USA Northeastern Univ Sch Informat Sci & Engn Liaoning 110004 Peoples R China
In the present paper, a call admission control scheme that can learn from the network environment and user behavior is developed for code division multiple access (CDMA) cellular networks that handle both voice and da... 详细信息
来源: 评论
Helicopter flight-control reconfiguration for main rotor actuator failures
收藏 引用
JOURNAL OF GUIDANCE CONTROL AND dynamicS 2003年 第4期26卷 572-584页
作者: Enns, R Si, J Arizona State Univ Dept Elect Engn Tempe AZ 85287 USA
Although reconfigurable flight control has been well demonstrated on fixed-wing aircraft using existing control surface redundancies, such failure accommodations were widely believed to be impossible for single main r... 详细信息
来源: 评论
Model-Free Distributed Reinforcement Learning State Estimation of a dynamical System Using Integral Value Functions
IEEE OPEN JOURNAL OF CONTROL SYSTEMS
收藏 引用
IEEE OPEN JOURNAL OF CONTROL SYSTEMS 2023年 2卷 70-78页
作者: Salamat, Babak Elsbacher, Gerhard Tonello, Andrea M. Belzner, Lenz TH Ingolstadt AImot Inst D-85049 Ingolstadt Germany Alpen Adria Univ Klagenfurt Inst Embedded Syst Klagenfurt Austria
One of the challenging problems in sensor network systems is to estimate and track the state of a target point mass with unknown dynamics. Recent improvements in deep learning (DL) show a renewed interest in applying ... 详细信息
来源: 评论