咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 3 篇 期刊文献

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 16 篇 工学
    • 14 篇 计算机科学与技术...
    • 6 篇 电气工程
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
  • 7 篇 医学
    • 5 篇 临床医学
    • 2 篇 特种医学
  • 1 篇 理学
    • 1 篇 物理学

主题

  • 18 篇 neural image com...
  • 3 篇 transformer
  • 3 篇 entropy model
  • 1 篇 wavelet transfor...
  • 1 篇 semantic informa...
  • 1 篇 gans
  • 1 篇 adaptive resolut...
  • 1 篇 augmented self-a...
  • 1 篇 implicit neural ...
  • 1 篇 deep learning
  • 1 篇 global context
  • 1 篇 generative adver...
  • 1 篇 self-attention
  • 1 篇 content adaptive...
  • 1 篇 non-isotropic di...
  • 1 篇 encoder networks
  • 1 篇 quantization fac...
  • 1 篇 perceptual image...
  • 1 篇 spatio-channel e...
  • 1 篇 transformer-base...

机构

  • 2 篇 west virginia un...
  • 2 篇 univ sci & techn...
  • 2 篇 interdigital inc...
  • 1 篇 hitachi ltd res ...
  • 1 篇 beihang univ sch...
  • 1 篇 school of comput...
  • 1 篇 radboud univ nij...
  • 1 篇 west virginia un...
  • 1 篇 hong kong univ s...
  • 1 篇 harbin inst tech...
  • 1 篇 univ hong kong d...
  • 1 篇 southwest univ p...
  • 1 篇 beijing inst tec...
  • 1 篇 radboud univ nij...
  • 1 篇 technol innovat ...
  • 1 篇 erasmus mc inst ...
  • 1 篇 bytedance inc sa...
  • 1 篇 tianjin univ sch...
  • 1 篇 tohoku univ grad...
  • 1 篇 facebook ai res ...

作者

  • 3 篇 khoshkhahtinat a...
  • 3 篇 zafari ali
  • 3 篇 nasrabadi nasser...
  • 2 篇 tellez david
  • 2 篇 hellier pierre
  • 2 篇 balcilar muhamme...
  • 2 篇 ciompi francesco
  • 2 篇 mehta piyush m.
  • 2 篇 akyash mohammad
  • 2 篇 van der laak jer...
  • 1 篇 looijen-salamon ...
  • 1 篇 kashiani hossein
  • 1 篇 bao youneng
  • 1 篇 lu guo
  • 1 篇 hamidouche wassi...
  • 1 篇 esenlik semih
  • 1 篇 sun xiaoyan
  • 1 篇 tan wen
  • 1 篇 saadabadi mohamm...
  • 1 篇 wang shaokang

语言

  • 18 篇 英文
检索条件"主题词=Neural Image Compression"
18 条 记 录,以下是11-20 订阅
排序:
Multi-Context Dual Hyper-Prior neural image compression  22
Multi-Context Dual Hyper-Prior Neural Image Compression
收藏 引用
22nd IEEE International Conference on Machine Learning and Applications, ICMLA 2023
作者: Khoshkhahtinat, Atefeh Zafari, Ali Mehta, Piyush M. Akyash, Mohammad Kashiani, Hossein Nasrabadi, Nasser M. West Virginia University Dept. of Computer Science & Electrical Engineering WV United States West Virginia University Dept. of Mechanical & Aerospace Engineering WV United States
Transform and entropy models are the two core components in deep image compression neural networks. Most existing learning-based image compression methods utilize convolutional-based transform, which lacks the ability... 详细信息
来源: 评论
Exploring the rate-distortion-complexity optimization in neural image compression
收藏 引用
JOURNAL OF VISUAL COMMUNICATION AND image REPRESENTATION 2024年 105卷
作者: Gao, Yixin Feng, Runsen Guo, Zongyu Chen, Zhibo Univ Sci & Technol China Hefei Peoples R China
Despite a short history, neural image codecs have been shown to surpass classical image codecs in terms of rate-distortion performance. However, most of them suffer from significantly longer decoding times, which hind... 详细信息
来源: 评论
A Taxonomy of Miscompressions: Preparing image Forensics for neural compression  16
A Taxonomy of Miscompressions: Preparing Image Forensics for...
收藏 引用
2024 International Workshop on Information Forensics and Security
作者: Hofer, Nora Bohme, Rainer Univ Innsbruck Innsbruck Austria
neural compression has the potential to revolutionize lossy image compression. Based on generative models, recent schemes achieve unprecedented compression rates at high perceptual quality, but they compromise semanti... 详细信息
来源: 评论
Semantically-Guided image compression for Enhanced Perceptual Quality at Extremely Low Bitrates
收藏 引用
IEEE ACCESS 2024年 12卷 100057-100072页
作者: Iwai, Shoma Miyazaki, Tomo Omachi, Shinichiro Tohoku Univ Grad Sch Engn Sendai Miyagi 9808579 Japan
image compression methods based on machine learning have achieved high rate-distortion performance. However, the reconstructions they produce suffer from blurring at extremely low bitrates (below 0.1 bpp), resulting i... 详细信息
来源: 评论
Wavelet-like Transform with Subbands Fusion in Decoupled Structure for Deep image compression
Wavelet-like Transform with Subbands Fusion in Decoupled Str...
收藏 引用
Picture Coding Symposium (PCS)
作者: Ma, Ke Wu, Yaojun Zhang, Zhaobin Esenlik, Semih Sun, Xiaoyan Zhang, Kai Zhang, Li Univ Sci & Technol China Hefei 230026 Anhui Peoples R China Bytedance Inc San Diego CA 92122 USA
Wavelet-like transform, based on convolutional neural network (CNN), is content-adaptive and has made remarkable achievements in end-to-end image compression. However, the subsequent sequential processing of each subb... 详细信息
来源: 评论
AICT: AN ADAPTIVE image compression TRANSFORMER  30
AICT: AN ADAPTIVE IMAGE COMPRESSION TRANSFORMER
收藏 引用
30th IEEE International Conference on image Processing (ICIP)
作者: Ghorbel, Ahmed Hamidouche, Wassim Morin, Luce Univ Rennes CNRS INSA Rennes IETR UMR 6164 F-35000 Rennes France Technol Innovat Inst POB 9639 Abu Dhabi U Arab Emirates
Motivated by the efficiency investigation of the Tranformer-based transform coding framework, namely SwinT-ChARM, we propose to enhance the latter, as first, with a more straightforward yet effective Tranformer-based ... 详细信息
来源: 评论
Reducing The Amortization Gap of Entropy Bottleneck In End-to-End image compression
Reducing The Amortization Gap of Entropy Bottleneck In End-t...
收藏 引用
Picture Coding Symposium (PCS)
作者: Balcilar, Muhammet Damodaran, Bharath Hellier, Pierre InterDigital Inc Rennes France
End-to-end deep trainable models are about to exceed the performance of the traditional handcrafted compression techniques on videos and images. The core idea is to learn a non-linear transformation, modeled as a deep... 详细信息
来源: 评论
Laplacian-guided Entropy Model in neural Codec with Blur-dissipated Synthesis
Laplacian-guided Entropy Model in Neural Codec with Blur-dis...
收藏 引用
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Khoshkhahtinat, Atefeh Zafari, Ali Mehta, Piyush M. Nasrabadi, Nasser M. West Virginia Univ Morgantown WV 26506 USA
While replacing Gaussian decoders with a conditional diffusion model enhances the perceptual quality of reconstructions in neural image compression, their lack of inductive bias for image data restricts their ability ... 详细信息
来源: 评论