咨询与建议

限定检索结果

文献类型

  • 5 篇 期刊文献

馆藏范围

  • 5 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 4 篇 工学
    • 3 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 计算机科学与技术...
  • 3 篇 理学
    • 3 篇 数学
    • 2 篇 系统科学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 5 篇 neural learning ...
  • 1 篇 predefined-time ...
  • 1 篇 rehabilitation e...
  • 1 篇 exponential stab...
  • 1 篇 flexible joint
  • 1 篇 impedance contro...
  • 1 篇 neural networks
  • 1 篇 locally-accurate...
  • 1 篇 full state const...
  • 1 篇 nonlinear system
  • 1 篇 input constraint...
  • 1 篇 partial persiste...
  • 1 篇 strict-feedback ...
  • 1 篇 unknown chaotic ...
  • 1 篇 localized radial...
  • 1 篇 synchronization
  • 1 篇 nonlinear transf...
  • 1 篇 deterministic le...
  • 1 篇 sampled-data str...
  • 1 篇 persistent excit...

机构

  • 1 篇 univ sussex sch ...
  • 1 篇 guangdong univ f...
  • 1 篇 xihua univ sch e...
  • 1 篇 south china univ...
  • 1 篇 taif univ coll e...
  • 1 篇 s china univ tec...
  • 1 篇 s china univ tec...
  • 1 篇 hangzhou normal ...
  • 1 篇 univ sci & techn...
  • 1 篇 australian natl ...
  • 1 篇 pengcheng lab pe...
  • 1 篇 southwest jiaoto...
  • 1 篇 peng cheng lab p...
  • 1 篇 univ sci & techn...
  • 1 篇 south china univ...

作者

  • 2 篇 wang min
  • 1 篇 li yanan
  • 1 篇 jin chengwu
  • 1 篇 liang dengxiang
  • 1 篇 chu yu-ming
  • 1 篇 wang lixue
  • 1 篇 liu xia
  • 1 篇 yao qijia
  • 1 篇 alsubaie hajid
  • 1 篇 wang c
  • 1 篇 li qing
  • 1 篇 hill dj
  • 1 篇 yang yong
  • 1 篇 huang deqing
  • 1 篇 alotaibi ahmed

语言

  • 4 篇 英文
  • 1 篇 其他
检索条件"主题词=Neural Learning Control"
5 条 记 录,以下是1-10 订阅
排序:
neural learning control for sampled-data nonlinear systems based on Euler approximation and first-order filter
收藏 引用
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR control 2024年 第18期34卷 12050-12070页
作者: Liang, Dengxiang Wang, Min South China Univ Technol Sch Automat Sci & Engn Guangdong Prov Key Lab Tech & Equipment Macromol A Key Lab Autonomous Syst & Networked ControlMinist Guangzhou Peoples R China Pengcheng Lab Shenzhen Peoples R China
The primary focus of this research paper is to explore the realm of dynamic learning in sampled-data strict-feedback nonlinear systems (SFNSs) by leveraging the capabilities of radial basis function (RBF) neural netwo... 详细信息
来源: 评论
neural learning control METHODOLOGY FOR PREDEFINED-TIME SYNCHRONIZATION OF UNKNOWN CHAOTIC SYSTEMS
收藏 引用
FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY 2023年 第6期31卷 2340146-2340146页
作者: Yao, Qijia Li, Qing Alotaibi, Ahmed Alsubaie, Hajid Chu, Yu-ming Univ Sci & Technol Beijing Sch Automat & Elect Engn Beijing 100083 Peoples R China Univ Sci & Technol Beijing Key Lab Knowledge Automat Ind Proc Minist Educ Beijing 100083 Peoples R China Taif Univ Coll Engn Dept Mech Engn Taif 21944 Saudi Arabia Hangzhou Normal Univ Inst Adv Study Honorning Chen Jian Gong Hangzhou 313000 Peoples R China
This paper presents a method for achieving synchronization of chaotic systems with unknown dynamics, using a predefined-time neural learning control approach. The proposed method includes a control law for synchroniza... 详细信息
来源: 评论
neural learning impedance control of lower limb rehabilitation exoskeleton with flexible joints in the presence of input constraints
收藏 引用
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR control 2023年 第7期33卷 4191-4209页
作者: Yang, Yong Huang, Deqing Jin, Chengwu Liu, Xia Li, Yanan Xihua Univ Sch Elect Engn & Elect Informat Chengdu Peoples R China Southwest Jiaotong Univ Sch Elect Engn Chengdu Peoples R China Univ Sussex Sch Engn & Informat Brighton BN1 9RH E Sussex England
This article presents neural learning based adaptive impedance control for a lower limb rehabilitation exoskeleton with flexible joints (LLREFJ). First, the full model consisting of both the rigid link and the flexibl... 详细信息
来源: 评论
Dynamic neural learning for state constrained strict-feedback systems based on state transformation method
收藏 引用
NONLINEAR DYNAMICS 2025年 第9期113卷 9625-9644页
作者: Wang, Lixue Wang, Min Guangdong Univ Finance & Econ Sch Informat Sci Guangzhou 510320 Peoples R China South China Univ Technol Sch Automat Sci & Engn Guangdong Prov Key Lab Tech & Equipment Macromol A Guangzhou 510641 Peoples R China Peng Cheng Lab Shenzhen 518055 Peoples R China
This article studies the dynamic neural learning issue for strict-feedback nonlinear systems with full state constraints by utilizing the nonlinear transformed function (NTF) method. To handle the issue of state const... 详细信息
来源: 评论
learning from neural control
收藏 引用
IEEE TRANSACTIONS ON neural NETWORKS 2006年 第1期17卷 130-146页
作者: Wang, C Hill, DJ S China Univ Technol Coll Automat Guangzhou 510641 Peoples R China S China Univ Technol Ctr Control & Optimizat Guangzhou 510641 Peoples R China Australian Natl Univ Res Sch Informat Sci & Engn Canberra ACT 0200 Australia
One of the amazing successes of biological systems is their ability to "learn by doing" and so adapt to their environment. In this paper, first, a deterministic learning mechanism is presented, by which an a... 详细信息
来源: 评论