咨询与建议

限定检索结果

文献类型

  • 15 篇 会议
  • 10 篇 期刊文献

馆藏范围

  • 25 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 25 篇 工学
    • 16 篇 电气工程
    • 16 篇 计算机科学与技术...
    • 4 篇 软件工程
    • 2 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
  • 7 篇 理学
    • 7 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
  • 1 篇 文学
    • 1 篇 外国语言文学
  • 1 篇 管理学
    • 1 篇 管理科学与工程(可...

主题

  • 25 篇 neural network l...
  • 9 篇 speech recogniti...
  • 3 篇 speech-to-text
  • 3 篇 automatic speech...
  • 2 篇 lstm
  • 2 篇 emotional tenden...
  • 2 篇 continuous-space...
  • 2 篇 syntax
  • 2 篇 new word detecti...
  • 2 篇 conditional rand...
  • 2 篇 language model a...
  • 2 篇 morphology
  • 1 篇 language model p...
  • 1 篇 machine translat...
  • 1 篇 binarization
  • 1 篇 differentiable n...
  • 1 篇 class-based soft...
  • 1 篇 language model g...
  • 1 篇 paraphrase
  • 1 篇 memory managemen...

机构

  • 2 篇 univ cambridge d...
  • 1 篇 limsi cnrs f-914...
  • 1 篇 queens univ dept...
  • 1 篇 xiamen univ fuji...
  • 1 篇 chinese acad sci...
  • 1 篇 natl comp networ...
  • 1 篇 univ paris sud b...
  • 1 篇 univ chinese aca...
  • 1 篇 chinese acad sci...
  • 1 篇 shanghai jiao to...
  • 1 篇 peking univ inst...
  • 1 篇 limis cnrs f-914...
  • 1 篇 tsinghua univ de...
  • 1 篇 faculty of engin...
  • 1 篇 univ tokushima f...
  • 1 篇 iacas key lab sp...
  • 1 篇 univ southern ca...
  • 1 篇 univ paris 11 bp...
  • 1 篇 univ chinese aca...
  • 1 篇 tallinn univ tec...

作者

  • 3 篇 allauzen alexand...
  • 3 篇 le hai-son
  • 3 篇 gauvain jean-luc
  • 3 篇 oparin ilya
  • 3 篇 yvon francois
  • 2 篇 gales m. j. f.
  • 2 篇 yu kai
  • 2 篇 cai meng
  • 2 篇 shi yongzhe
  • 2 篇 lu bao-liang
  • 2 篇 zhao hai
  • 2 篇 sumita eiichiro
  • 2 篇 liu qi
  • 2 篇 liu x.
  • 2 篇 utiyama masao
  • 2 篇 liu jia
  • 2 篇 zhang wei-qiang
  • 2 篇 woodland p. c.
  • 2 篇 wang rui
  • 1 篇 wan xin

语言

  • 24 篇 英文
  • 1 篇 其他
检索条件"主题词=Neural Network Language Model"
25 条 记 录,以下是1-10 订阅
排序:
neural network language model Compression With Product Quantization and Soft Binarization
收藏 引用
IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND language PROCESSING 2020年 28卷 2438-2449页
作者: Yu, Kai Ma, Rao Shi, Kaiyu Liu, Qi Shanghai Jiao Tong Univ AI Inst Dept Comp Sci & Engn SpeechLab Shanghai 200240 Peoples R China Shanghai Jiao Tong Univ AI Inst MoE Key Lab Artificial Intelligence Shanghai 200240 Peoples R China
Large memory consumption of the neural network language models (NN LMs) prohibits their use in many resource-constrained scenarios. Hence, effective NN LM compression approaches that are independent of NN structures a... 详细信息
来源: 评论
Class-Based neural network language model for Second-Pass Rescoring in ASR  22
Class-Based Neural Network Language Model for Second-Pass Re...
收藏 引用
Interspeech Conference
作者: Dai, Lingfeng Liu, Qi Yu, Kai Shanghai Jiao Tong Univ AI Inst Dept Comp Sci & Engn X LANCE Lab Shanghai Peoples R China
language model rescoring, especially neural network language model (NNLM) rescoring, is widely used to achieve improved performance in a second-pass automatic speech recognition (ASR) system. The rescoring NNLM is usu... 详细信息
来源: 评论
Multi-domain neural network language model
Multi-domain Neural Network Language Model
收藏 引用
14th Annual Conference of the International-Speech-Communication-Association (INTERSPEECH 2013)
作者: Alumae, Tanel Tallinn Univ Technol Inst Cybernet Tallinn Estonia
The paper describes a neural network language model that jointly models language in many related domains. In addition to the traditional layers of a neural network language model, the proposed model also trains a vect... 详细信息
来源: 评论
Differentiable N-gram objective on abstractive summarization
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2023年 215卷
作者: Zhu, Yunqi Yang, Xuebing Wu, Yuanyuan Zhu, Mingjin Zhang, Wensheng Hainan Univ Sch Informat & Commun Engn Haikou Peoples R China Chinese Acad Sci Inst Automat Beijing Peoples R China South China Univ Technol Shien Ming Wu Sch Intelligent Engn Guangzhou Peoples R China
ROUGE is a standard automatic evaluation metric based on N-gram for sequence-to-sequence tasks like abstractive summarization, while cross-entropy loss is an essential objective that optimizes at unigram level for neu... 详细信息
来源: 评论
Automatic Speech Recognition System with Output-Gate Projected Gated Recurrent Unit
收藏 引用
IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS 2019年 第2期E102D卷 355-363页
作者: Cheng, Gaofeng Zhang, Pengyuan Xu, Ji Univ Chinese Acad Sci Sch Elect Elect & Commun Engn Beijing Peoples R China Univ Chinese Acad Sci Beijing Peoples R China Chinese Acad Sci Inst Acoust Key Lab Speech Acoust & Content Understanding Beijing Peoples R China
The long short-term memory recurrent neural network (LSTM) has achieved tremendous success for automatic speech recognition (ASR). However, the complicated gating mechanism of LSTM introduces a massive computational c... 详细信息
来源: 评论
STATE-OF-THE-ART SPEECH RECOGNITION USING MULTI-STREAM SELF-ATTENTION WITH DILATED 1D CONVOLUTIONS
STATE-OF-THE-ART SPEECH RECOGNITION USING MULTI-STREAM SELF-...
收藏 引用
IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)
作者: Han, Kyu J. Prieto, Ramon Ma, Tao ASAPP Inc Mountain View CA 94043 USA
Self-attention has been a huge success for many downstream tasks in NLP, which led to exploration of applying self-attention to speech problems as well. The efficacy of selfattention in speech applications, however, s... 详细信息
来源: 评论
Expanding Queries for Code Search Using Semantically Related API Class-names
收藏 引用
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2018年 第11期44卷 1070-1082页
作者: Zhang, Feng Niu, Haoran Keivanloo, Iman Zou, Ying Queens Univ Sch Comp Kingston ON K7L 3N6 Canada Queens Univ Dept Elect & Comp Engn Kingston ON K7L 3N6 Canada
When encountering unfamiliar programming tasks (e.g., connecting to a database), there is a need to seek potential working code examples. Instead of using code search engines, software developers usually post related ... 详细信息
来源: 评论
STRUCTURED OUTPUT LAYER neural network language model
STRUCTURED OUTPUT LAYER NEURAL NETWORK LANGUAGE MODEL
收藏 引用
IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
作者: Le, Hai-Son Oparin, Ilya Allauzen, Alexandre Gauvain, Jean-Luc Yvon, Francois Univ Paris Sud BP 133 F-91403 Orsay France LIMIS CNRS F-91403 Orsay France
This paper introduces a new neural network language model (NNLM) based on word clustering to structure the output vocabulary: Structured Output Layer NNLM. This model is able to handle vocabularies of arbitrary size, ... 详细信息
来源: 评论
Learning from past mistakes: improving automatic speech recognition output via noisy-clean phrase context modeling
收藏 引用
APSIPA TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING 2019年 第1期8卷
作者: Shivakumar, Prashanth Gurunath Li, Haoqi Knight, Kevin Georgiou, Panayiotis Univ Southern Calif Signal Proc Commun Understanding & Behav Anal Lab Los Angeles CA 90007 USA Univ Southern Calif Informat Sci Inst Los Angeles CA USA
Automatic speech recognition (ASR) systems often make unrecoverable errors due to subsystem pruning (acoustic, language and pronunciation models);for example, pruning words due to acoustics using short-term context, p... 详细信息
来源: 评论
Comparison of Various neural network language models in Speech Recognition  3
Comparison of Various Neural Network Language Models in Spee...
收藏 引用
3rd International Conference on Information Science and Control Engineering (ICISCE)
作者: Zuo, Lingyun Liu, Jian Wan, Xin IACAS Key Lab Speech Acoust & Content Beijing Peoples R China Chinese Acad Sci XTIPC Xinjiang Lab Minor Speech & Language Informat Pro Beijing Peoples R China Natl Comp Network Emergency Response Tech Team Coordinat Ctr Beijing Peoples R China
In recent years, research on language modeling for speech recognition has increasingly focused on the application of neural networks. However, the performance of neural network language models strongly depends on thei... 详细信息
来源: 评论