咨询与建议

限定检索结果

文献类型

  • 10 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 17 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 17 篇 工学
    • 8 篇 计算机科学与技术...
    • 4 篇 电气工程
    • 3 篇 信息与通信工程
    • 2 篇 生物医学工程(可授...
    • 2 篇 软件工程
    • 1 篇 光学工程
    • 1 篇 仪器科学与技术
    • 1 篇 地质资源与地质工...
  • 4 篇 理学
    • 4 篇 物理学
  • 2 篇 医学
    • 2 篇 临床医学
    • 1 篇 基础医学(可授医学...
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 17 篇 neural network v...
  • 9 篇 deep learning
  • 4 篇 convolutional ne...
  • 3 篇 transfer learnin...
  • 3 篇 machine learning
  • 2 篇 visual analytics
  • 2 篇 vocal imitation
  • 2 篇 visualization
  • 2 篇 cnn
  • 2 篇 neural network
  • 2 篇 emotion detectio...
  • 2 篇 siamese style ne...
  • 1 篇 interpretability
  • 1 篇 infrared spectru...
  • 1 篇 neural network c...
  • 1 篇 neural network t...
  • 1 篇 one-dimensional ...
  • 1 篇 transfer convolu...
  • 1 篇 cycle gan
  • 1 篇 deep neural netw...

机构

  • 1 篇 univ sao paulo s...
  • 1 篇 univ freiburg me...
  • 1 篇 beijing national...
  • 1 篇 univ freiburg me...
  • 1 篇 the department o...
  • 1 篇 tech univ denmar...
  • 1 篇 univ oxford oxfo...
  • 1 篇 charles univ pra...
  • 1 篇 univ fed rio gra...
  • 1 篇 univ rovira & vi...
  • 1 篇 univ oslo oslo
  • 1 篇 univ freiburg fa...
  • 1 篇 sharif univ tech...
  • 1 篇 york univ on
  • 1 篇 univ copenhagen ...
  • 1 篇 graz univ techno...
  • 1 篇 state key labora...
  • 1 篇 dalhousie univ f...
  • 1 篇 fuzhou univ coll...
  • 1 篇 king's coll lond...

作者

  • 3 篇 cantareira gabri...
  • 2 篇 etemad elham
  • 2 篇 paulovich fernan...
  • 1 篇 wildes richard p...
  • 1 篇 wen-kai lu
  • 1 篇 schulze-bonhage ...
  • 1 篇 fung pascale
  • 1 篇 ferreira martha ...
  • 1 篇 feichtenhofer ch...
  • 1 篇 paulovich fernan...
  • 1 篇 wilczak cezary w...
  • 1 篇 yu-qing wang
  • 1 篇 pascale fung
  • 1 篇 habibi aghdam ha...
  • 1 篇 gniadecka m
  • 1 篇 yichi zhang
  • 1 篇 bertero dario
  • 1 篇 hartmann k.
  • 1 篇 marusic p.
  • 1 篇 pinz axel

语言

  • 17 篇 英文
检索条件"主题词=Neural Network Visualization"
17 条 记 录,以下是1-10 订阅
排序:
Using a one-dimensional convolutional neural network on FTIR spectroscopy to measure the thickness of composite plastic films
收藏 引用
INFRARED PHYSICS & TECHNOLOGY 2025年 147卷
作者: Wang, Xiaodong Ni, Liwei Zhang, Cheng Xu, Qiyue Ye, Shuliang China Jiliang Univ Inst Thermal Anal Technol & Instrumentat 258 Xueyuan St Hangzhou 310018 Peoples R China
Multilayer composite films have gained widespread application across a variety of industries and applications due to their unique properties and functionalities. The precise control of the thickness of each layer ensu... 详细信息
来源: 评论
Seismic impedance inversion based on cycle-consistent generative adversarial network
收藏 引用
Petroleum Science 2022年 第1期19卷 147-161页
作者: Yu-Qing Wang Qi Wang Wen-Kai Lu Qiang Ge Xin-Fei Yan The Institute for Artificial Intelligence Tsinghua University(THUAI)Beijing100084China State Key Laboratory of Intelligent Technology and Systems Tsinghua UniversityBeijing100084China Beijing National Research Center for Information Science and Technology(BNRist) Tsinghua UniversityBeijing100084China The Department of Automation Tsinghua UniversityBeijing100084China The Research Institute of Petroleum Exploration and Development China National Petroleum Corporation(CNPC)Beijing100083China
Deep learning has achieved great success in a variety of research fields and industrial ***,when applied to seismic inversion,the shortage of labeled data severely influences the performance of deep learning-based ***... 详细信息
来源: 评论
Deep Insights into Convolutional networks for Video Recognition
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2020年 第2期128卷 420-437页
作者: Feichtenhofer, Christoph Pinz, Axel Wildes, Richard P. Zisserman, Andrew Graz Univ Technol Graz Austria York Univ Toronto ON Canada Univ Oxford Oxford England
As the success of deep models has led to their deployment in all areas of computer vision, it is increasingly important to understand how these representations work and what they are capturing. In this paper, we shed ... 详细信息
来源: 评论
An optimized convolutional neural network with bottleneck and spatial pyramid pooling layers for classification of foods
收藏 引用
PATTERN RECOGNITION LETTERS 2018年 105卷 50-58页
作者: Jahani Heravi, Elnaz Habibi Aghdam, Hamed Puig, Domenec Univ Rovira & Virgili Dept Comp Engn & Math Tarragona Spain
Keeping record of daily meal intake is an effective solution for tackling with obesity and overweight. This can be done by developing apps on smartphones that are able to automatically recommend a short list of most p... 详细信息
来源: 评论
A task-and-technique centered survey on visual analytics for deep learning model engineering
收藏 引用
COMPUTERS & GRAPHICS-UK 2018年 第Dec.期77卷 30-49页
作者: Garcia, Rafael Telea, Alexandru C. da Silva, Bruno Castro Torresen, Jim Dihl Comba, Joao Luiz Univ Fed Rio Grande do Sul Porto Alegre RS Brazil Univ Oslo Oslo Norway Univ Groningen Groningen Netherlands
Although deep neural networks have achieved state-of-the-art performance in several artificial intelligence applications in the past decade, they are still hard to understand. In particular, the features learned by de... 详细信息
来源: 评论
High-Impedance Fault Detection Methodology Using Time-Frequency Spectrum and Transfer Convolutional neural network in Distribution networks
收藏 引用
IEEE SYSTEMS JOURNAL 2023年 第3期17卷 4002-4013页
作者: Guo, Mou-Fa Guo, Zi-Yi Gao, Jian-Hong Chen, Duan-Yu Fuzhou Univ Coll Elect Engn & Automat Fuzhou 350108 Peoples R China Yuan Ze Univ Dept Elect Engn Taoyuan 32003 Taiwan
High-impedance fault (HIF) detection has always been difficult in distribution networks due to the lack of field data and the large difference between field and simulation waveforms. Based on the characteristics of ze... 详细信息
来源: 评论
Detection of skin cancer by classification of Raman spectra
收藏 引用
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING 2004年 第10期51卷 1784-1793页
作者: Sigurdsson, S Philipsen, PA Hansen, LK Larsen, J Gniadecka, M Wulf, HC Tech Univ Denmark DK-2800 Lyngby Denmark Univ Copenhagen Dept Pathol Bispebjerg Hosp DK-2400 Copenhagen Denmark
Skin lesion classification based on in vitro Raman spectroscopy is approached using a nonlinear neural network classifier. The classification framework is probabilistic and highly automated. The framework includes a f... 详细信息
来源: 评论
neural network training fingerprint: visual analytics of the training process in classification neural networks
收藏 引用
JOURNAL OF visualization 2022年 第3期25卷 593-612页
作者: Ferreira, Martha Dais Cantareira, Gabriel D. de Mello, Rodrigo F. Paulovich, Fernando V. King's Coll London Dept Informatics London England Univ Sao Paulo Sao Carlos Brazil Dalhousie Univ Fac Comp Sci Halifax NS Canada Kings Coll London Dept Informat London England Univ Sao Paulo Sao Carlos Brazil
The striking results of deep neural networks (DNN) have motivated its wide acceptance to tackle large datasets and complex tasks such as natural language processing, facial recognition, and artificial image generation... 详细信息
来源: 评论
Deep Reinforcement Learning in Serious Games: Analysis and Design of Deep neural network Architectures  16th
Deep Reinforcement Learning in Serious Games: Analysis and D...
收藏 引用
16th International Conference on Computer Aided Systems Theory (EUROCAST)
作者: Dobrovsky, Aline Wilczak, Cezary W. Hahn, Paul Hofmann, Marko Borghoff, Uwe M. Univ Bundeswehr Munchen Fak Informat D-85577 Neubiberg Germany
Serious games present a noteworthy research area for artificial intelligence, where automated adaptation and reasonable NPC behaviour present essential challenges. Deep reinforcement learning has already been successf... 详细信息
来源: 评论
visualization AND INTERPRETATION OF SIAMESE STYLE CONVOLUTIONAL neural networkS FOR SOUND SEARCH BY VOCAL IMITATION
VISUALIZATION AND INTERPRETATION OF SIAMESE STYLE CONVOLUTIO...
收藏 引用
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
作者: Zhang, Yichi Duan, Zhiyao Univ Rochester Dept Elect & Comp Engn Rochester NY 14627 USA
Designing systems that allow users to search sounds through vocal imitation augments the current text-based search engines and advances human-computer interaction. Previously we proposed a Siamese style convolutional ... 详细信息
来源: 评论