咨询与建议

限定检索结果

文献类型

  • 43 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 50 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 38 篇 工学
    • 21 篇 电气工程
    • 18 篇 计算机科学与技术...
    • 17 篇 控制科学与工程
    • 3 篇 仪器科学与技术
    • 3 篇 软件工程
    • 2 篇 动力工程及工程热...
    • 2 篇 化学工程与技术
    • 2 篇 石油与天然气工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 电子科学与技术(可...
    • 1 篇 信息与通信工程
    • 1 篇 航空宇航科学与技...
  • 20 篇 理学
    • 17 篇 数学
    • 5 篇 系统科学
    • 3 篇 物理学
  • 6 篇 管理学
    • 6 篇 管理科学与工程(可...

主题

  • 50 篇 neural network a...
  • 4 篇 adaptive control
  • 3 篇 control system s...
  • 2 篇 vehicle dynamics
  • 2 篇 deep learning
  • 2 篇 hybrid power sys...
  • 2 篇 human-multi-robo...
  • 2 篇 fuel injection d...
  • 2 篇 convergence
  • 2 篇 optimized contro...
  • 2 篇 dynamic behavior...
  • 2 篇 lyapunov methods
  • 2 篇 sliding mode con...
  • 2 篇 speed tracking
  • 2 篇 backstepping des...
  • 2 篇 optimal control
  • 2 篇 neurocontrollers
  • 2 篇 multi-agent syst...
  • 2 篇 multi-agent adap...
  • 2 篇 learning algorit...

机构

  • 2 篇 natl univ singap...
  • 2 篇 univ vienna fac ...
  • 2 篇 brunvoll as mold...
  • 2 篇 southeast univ s...
  • 1 篇 natl res univ hi...
  • 1 篇 shiraz univ sch ...
  • 1 篇 abo akad univ de...
  • 1 篇 univ memphis dep...
  • 1 篇 xiangtan tract l...
  • 1 篇 rocket force uni...
  • 1 篇 guangxi univ fin...
  • 1 篇 texas a&m univ d...
  • 1 篇 xi an jiao tong ...
  • 1 篇 tech univ munich...
  • 1 篇 univ vienna res ...
  • 1 篇 lviv polytech na...
  • 1 篇 univ southern ca...
  • 1 篇 state grid zheji...
  • 1 篇 thales dms
  • 1 篇 austrian acad sc...

作者

  • 3 篇 wen guanghui
  • 3 篇 grohs philipp
  • 2 篇 wu xuedong
  • 2 篇 伍雪冬
  • 2 篇 song zhihuan
  • 1 篇 gao fan
  • 1 篇 lin funing
  • 1 篇 jentzen arnulf
  • 1 篇 panov aleksandr ...
  • 1 篇 molga eugeniusz
  • 1 篇 dym nadav
  • 1 篇 alshammari obaid
  • 1 篇 diao chen
  • 1 篇 mo sigrid marie
  • 1 篇 yu wenwu
  • 1 篇 arefi mohammad m...
  • 1 篇 calvo hiram
  • 1 篇 shuzhi sam ge
  • 1 篇 chen ying
  • 1 篇 cai guangbin

语言

  • 41 篇 英文
  • 9 篇 其他
检索条件"主题词=Neural network approximation"
50 条 记 录,以下是1-10 订阅
排序:
neural network approximation of Refinable Functions
收藏 引用
IEEE TRANSACTIONS ON INFORMATION THEORY 2023年 第1期69卷 482-495页
作者: Daubechies, Ingrid De Vore, Ronald Dym, Nadav Faigenbaum-Golovin, Shira Kovalsky, Shahar Z. Lin, Kung-Chin Park, Josiah Petrova, Guergana Sober, Barak Duke Univ Dept Math Durham NC 27708 USA Texas A&M Univ Dept Math College Stn TX 77843 USA Technion Israel Inst Technol Fac Math IL-3200003 Haifa Israel Duke Univ Rhodes Informat Initiat Durham NC 27708 USA Univ North Carolina Chapel Hill Dept Math Chapel Hill NC 27599 USA Hebrew Univ Jerusalem Dept Stat & Data Sci & Digital Humanities IL-9190501 Jerusalem Israel
In the desire to quantify the success of neural networks in deep learning and other applications, there is a great interest in understanding which functions are efficiently approximated by the outputs of neural networ... 详细信息
来源: 评论
neural network approximation-based backstepping sliding mode control for spacecraft with input saturation and dynamics uncertainty
收藏 引用
ACTA ASTRONAUTICA 2022年 191卷 1-10页
作者: Liu, Erjiang Yan, Ye Yang, Yueneng Natl Univ Def Technol Coll Aerosp Sci & Engn Changsha 410073 Peoples R China Chinese Acad Mil Sci Natl Innovat Inst Def Technol Beijing 100091 Peoples R China Natl Univ Def Technol Coll Intelligence Sci Changsha 410073 Peoples R China
This paper proposed a neural network approximation-based backstepping sliding mode control approach (NN-BSMC) to address the problem of attitude tracking control for spacecraft in the presence of inertial uncertaintie... 详细信息
来源: 评论
neural network approximation of Helicopter Turboshaft Engine Parameters for Improved Efficiency
收藏 引用
ENERGIES 2024年 第9期17卷 2233页
作者: Vladov, Serhii Yakovliev, Ruslan Bulakh, Maryna Vysotska, Victoria Kharkiv Natl Univ Internal Affairs Kremenchuk Flight Coll 17-6 Peremohy St UA-39605 Kremenchuk Ukraine Rzeszow Univ Technol Fac Mech & Technol PL-37450 Stalowa Wola Poland Lviv Polytech Natl Univ Informat Syst & Networks Dept 12 Bandera St UA-79013 Lvov Ukraine Osnabruck Univ Inst Comp Sci 1 Friedrich Janssen St D-49076 Osnabruck Germany
The work is devoted to the development of a method for neural network approximation of helicopter turboshaft engine parameters, which is the basis for researching engine energy characteristics to improve efficiency, r... 详细信息
来源: 评论
Convergence rates for random feature neural network approximation in molecular dynamics
收藏 引用
BIT NUMERICAL MATHEMATICS 2025年 第1期65卷 1-40页
作者: Huang, Xin Plechac, Petr Sandberg, Mattias Szepessy, Anders Kungl Tekn Hogskolan Inst Matemat S-10044 Stockholm Sweden Univ Delaware Dept Math Sci Newark DE 19716 USA
Random feature neural network approximations of the potential in Hamiltonian systems yield approximations of molecular dynamics correlation observables that have the expected error OK-1+J-1212\documentclass[12pt]{mini... 详细信息
来源: 评论
A novel preview control for MLD models and its neural network approximation for real-time implementation: Application to semi-active vibration control of a vehicle suspension
收藏 引用
IET CONTROL THEORY AND APPLICATIONS 2023年 第4期17卷 433-445页
作者: Sato, Kaoru Hiramoto, Kazuhiko Niigata Univ Grad Sch Sci & Technol Dept Adv Mat Sci & Technol Niigata Japan Niigata Univ Fac Engn Mech Engn Program Niigata Japan
Advances in image processing technology have made it possible to measure the surface shape of the road ahead while driving. A new semi-active suspension control method considering the forward road surface shape is pro... 详细信息
来源: 评论
Deep neural network approximation for high-dimensional elliptic PDEs with boundary conditions
收藏 引用
IMA JOURNAL OF NUMERICAL ANALYSIS 2022年 第3期42卷 2055-2082页
作者: Grohs, Philipp Herrmann, Lukas Univ Vienna Fac Math Oskar Morgenstern Pl 1 A-1090 Vienna Austria Austrian Acad Sci Johann Radon Inst Computat & Appl Math Altenbergerstr 69 A-4040 Linz Austria
In recent work it has been established that deep neural networks (DNNs) are capable of approximating solutions to a large class of parabolic partial differential equations without incurring the curse of dimension. How... 详细信息
来源: 评论
Hierarchical fusion network for periocular and iris by neural network approximation and sparse autoencoder
收藏 引用
MACHINE VISION AND APPLICATIONS 2020年 第1期32卷 p1-10页
作者: Algashaam, Faisal Kien Nguyen Banks, Jasmine Chandran, Vinod Tuan-Anh Do Alkanhal, Mohamed Queensland Univ Technol Brisbane Qld Australia King Abdulaziz City Sci & Technol Riyadh Saudi Arabia Hanoi Univ Sci & Technol Hanoi Vietnam
The eye region is one of the most attractive sources for identification and verification due to the representative availability of such biometric modalities as periocular and iris. Many score-level fusion approaches h... 详细信息
来源: 评论
A New L1 neural network Adaptive Wind Turbine Pitch Control Strategy
收藏 引用
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS 2025年 第1期34卷
作者: Hu, Hui Peng, Long Li, Xiaoqin Chen, Ying Yan, Jiande Guo, Peng Cheng, Bozhi Hunan Inst Engn Coll Elect & Informat Engn Xiangtan Hunan Peoples R China Xiangtan Tract Locomot Factory Co Ltd Xiangtan Hunan Peoples R China
This paper proposes a novel L1 neural network (NN) adaptive control strategy to address the challenges posed by the non-affine nonlinear characteristics of wind turbines operating at high wind speed. These challenges ... 详细信息
来源: 评论
Mean-Field Multiagent Reinforcement Learning: A Decentralized network Approach
收藏 引用
MATHEMATICS OF OPERATIONS RESEARCH 2025年 第1期50卷 1-781 C2页
作者: Gu, Haotian Guo, Xin Wei, Xiaoli Xu, Renyuan Univ Calif Berkeley Dept Math Berkeley CA 94720 USA Univ Calif Berkeley Dept Ind Engn & Operat Res Berkeley CA 94720 USA Tsinghua Shenzhen Int Grad Sch Shenzhen 518071 Peoples R China Univ Southern Calif Ind & Syst Engn Los Angeles CA 90089 USA
One of the challenges for multiagent reinforcement learning (MARL) is designing efficient learning algorithms for a large system in which each agent has only limited or partial information of the entire system. Wherea... 详细信息
来源: 评论
Adaptive neural Preassigned-Time Control for Macro-Micro Composite Positioning Stage with Displacement Constraints
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2024年 第2期20卷 1103-1112页
作者: Chen, Xiangyong Liu, Huawei Wen, Guanghui Liu, Yang Cao, Jinde Qiu, Jianlong Linyi Univ Sch Automat & Elect Engn Key Lab Complex Syst & Intelligent Comp Univ Shan Linyi 276005 Shandong Peoples R China Southeast Univ Sch Math Nanjing 210096 Peoples R China Southeast Univ Res Ctr Complex Syst & Network Sci Nanjing 210096 Peoples R China Qingdao Univ Sci & Technol Sch Automat Sci & Technol Qingdao 266100 Peoples R China
This paper considers the rapid vibration reduction problem of macro-micro composite positioning stage (MMCPS) using an adaptive neural preassigned-time control strategy. Based on Newton's second law, the MMCPS is ... 详细信息
来源: 评论