咨询与建议

限定检索结果

文献类型

  • 1 篇 会议

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 计算机科学与技术...

主题

  • 1 篇 non-sampling mac...
  • 1 篇 knowledge graph ...
  • 1 篇 space efficiency
  • 1 篇 computational ef...

机构

  • 1 篇 rutgers state un...
  • 1 篇 tsinghua univ pe...

作者

  • 1 篇 chen chong
  • 1 篇 zhang yongfeng
  • 1 篇 ge yingqiang
  • 1 篇 xu shuyuan
  • 1 篇 fu zuohui
  • 1 篇 li zelong
  • 1 篇 ji jianchao

语言

  • 1 篇 英文
检索条件"主题词=Non-Sampling Machine Learning"
1 条 记 录,以下是1-10 订阅
排序:
Efficient non-sampling Knowledge Graph Embedding  21
Efficient Non-Sampling Knowledge Graph Embedding
收藏 引用
30th World Wide Web Conference (WWW)
作者: Li, Zelong Ji, Jianchao Fu, Zuohui Ge, Yingqiang Xu, Shuyuan Chen, Chong Zhang, Yongfeng Rutgers State Univ New Brunswick NJ 08901 USA Tsinghua Univ Beijing Peoples R China
Knowledge Graph (KG) is a flexible structure that is able to describe the complex relationship between data entities. Currently, most KG embedding models are trained based on negative sampling, i.e., the model aims to... 详细信息
来源: 评论