咨询与建议

限定检索结果

文献类型

  • 48 篇 期刊文献
  • 4 篇 会议

馆藏范围

  • 52 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 51 篇 工学
    • 27 篇 控制科学与工程
    • 22 篇 电气工程
    • 20 篇 计算机科学与技术...
    • 12 篇 仪器科学与技术
    • 12 篇 化学工程与技术
    • 4 篇 信息与通信工程
    • 2 篇 机械工程
    • 1 篇 土木工程
    • 1 篇 水利工程
    • 1 篇 环境科学与工程(可...
    • 1 篇 软件工程
    • 1 篇 公安技术
  • 10 篇 理学
    • 6 篇 数学
    • 5 篇 化学
    • 4 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 1 篇 生物学
  • 10 篇 管理学
    • 10 篇 管理科学与工程(可...
  • 1 篇 医学
    • 1 篇 基础医学(可授医学...
    • 1 篇 临床医学

主题

  • 52 篇 nonlinear proces...
  • 29 篇 fault detection
  • 8 篇 kernel
  • 8 篇 kernel principal...
  • 6 篇 feature extracti...
  • 6 篇 principal compon...
  • 4 篇 fault diagnosis
  • 4 篇 deep learning
  • 4 篇 kernel principal...
  • 4 篇 data mining
  • 4 篇 fault isolation
  • 4 篇 process monitori...
  • 4 篇 correlation
  • 4 篇 quality-related
  • 4 篇 canonical correl...
  • 3 篇 tennessee eastma...
  • 3 篇 monitoring
  • 3 篇 deep neural netw...
  • 3 篇 reduced rank kpc...
  • 3 篇 data-driven

机构

  • 3 篇 east china univ ...
  • 3 篇 shanghai jiao to...
  • 3 篇 east china univ ...
  • 2 篇 king abdulaziz u...
  • 2 篇 univ sci & techn...
  • 2 篇 univ tabuk fac c...
  • 2 篇 cent south univ ...
  • 2 篇 china univ petr ...
  • 2 篇 northeastern uni...
  • 2 篇 univ monastir na...
  • 2 篇 bohai univ coll ...
  • 2 篇 zhejiang univ st...
  • 2 篇 northeastern uni...
  • 2 篇 chung yuan chris...
  • 1 篇 beihang univ han...
  • 1 篇 univ sci & techn...
  • 1 篇 east china univ ...
  • 1 篇 ningbo univ fac ...
  • 1 篇 jiangnan univ sc...
  • 1 篇 univ alberta dep...

作者

  • 8 篇 yan xuefeng
  • 6 篇 lahdhiri hajer
  • 6 篇 taouali okba
  • 6 篇 jiang qingchao
  • 4 篇 deng xiaogang
  • 3 篇 zhang yingwei
  • 3 篇 yuan xiaofeng
  • 3 篇 wang guang
  • 3 篇 yang yupu
  • 3 篇 peng kaixiang
  • 3 篇 jiao jianfang
  • 2 篇 changkyoo yoo
  • 2 篇 wang yalin
  • 2 篇 wang kai
  • 2 篇 tian xuemin
  • 2 篇 ben abdellafou k...
  • 2 篇 jiang teng
  • 2 篇 zhang zehan
  • 2 篇 chen junghui
  • 2 篇 chen sheng

语言

  • 48 篇 英文
  • 3 篇 其他
  • 1 篇 中文
检索条件"主题词=Nonlinear process monitoring"
52 条 记 录,以下是1-10 订阅
排序:
Deep feature representation with online convolutional adversarial autoencoder for nonlinear process monitoring
收藏 引用
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS 2024年 155卷
作者: Yang, Xu Xiao, Jieshi Huang, Jian Peng, Kaixiang Univ Sci & Technol Beijing Sch Automat & Elect Engn Key Lab Knowledge Automat Ind Proc Minist Educ Beijing 100083 Peoples R China
Background: The significant nonlinearity between the monitoring variables introduces challenges in the task of features extraction when implementing fault detection for an industrial process. Recently, neural network ... 详细信息
来源: 评论
KPCA-CCA-Based Quality-Related Fault Detection and Diagnosis Method for nonlinear process monitoring
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2023年 第5期19卷 6492-6501页
作者: Wang, Guang Yang, Jinghui Qian, Yucheng Han, Jingsong Jiao, Jianfang North China Elect Power Univ Dept Automat Baoding Campus Baoding 071003 Peoples R China
This work concerns the issue of quality-related fault detection and diagnosis (QrFDD) for nonlinear process monitoring. A kernel principal component analysis (KPCA)-based canonical correlation analysis (CCA) model is ... 详细信息
来源: 评论
A General Quality-Related nonlinear process monitoring Approach Based on Input-Output Kernel PLS
收藏 引用
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT 2023年 72卷 1页
作者: Kong, Xiangyu Luo, Jiayu Feng, Xiaowei Liu, Meizhi High Tech Inst Xian Xian 710025 Peoples R China Shanxi Datong Univ Sch Phys & Elect Sci Datong 037009 Peoples R China
Projection to latent structure (PLS) is a well-known data-based approach widely used in industrial process monitoring. Kernel PLS (KPLS) was proposed in prior studies to apply the PLS in the nonlinear process. However... 详细信息
来源: 评论
Data-feature-driven nonlinear process monitoring based on joint deep learning models with dual-scale
收藏 引用
INFORMATION SCIENCES 2022年 591卷 381-399页
作者: Yu, Jianbo Yan, Xuefeng East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China
The interactions among the gauged data in most exiting real-life cases are correlative inevitably given the complicated behavior of process systems, that is the observed input data should better be interpreted as gene... 详细信息
来源: 评论
Artificial Neural Correlation Analysis for Performance-Indicator-Related nonlinear process monitoring
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2022年 第2期18卷 1039-1049页
作者: Chen, Qing Liu, Zhanzhan Ma, Xin Wang, Youqing Beijing Univ Chem Technol Coll Informat Sci & Technol Beijing 100029 Peoples R China
In this article, a novel fault detection and process monitoring method referred to as artificial neural correlation analysis (ANCA) is proposed. Because nonlinear characteristics are common in complex industrial proce... 详细信息
来源: 评论
nonlinear process monitoring based on decentralized generalized regression neural networks
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2020年 150卷 113273-000页
作者: Lan, Ting Tong, Chudong Yu, Haizhen Shi, Xuhua Luo, Lijia Ningbo Univ Fac Elect Engn & Comp Sci Ningbo 315211 Peoples R China Zhejiang Univ Technol Inst Proc Equipment & Control Engn Hangzhou 310014 Peoples R China
Given that the main task of process monitoring (i.e., fault detection) is actually a classical one-class classification problem, the generalized regression neural network (GRNN) is directly inapplicable for handling p... 详细信息
来源: 评论
nonlinear process monitoring Based on Global Preserving Unsupervised Kernel Extreme Learning Machine
收藏 引用
IEEE ACCESS 2019年 7卷 106053-106064页
作者: Zhang, Hanyuan Deng, Xiaogang Zhang, Yunchu Hou, Chuanjing Li, Chengdong Xin, Zheng Shandong Jianzhu Univ Sch Informat & Elect Engn Jinan 250101 Shandong Peoples R China China Univ Petr East China Coll Informat & Control Engn Qingdao 266580 Shandong Peoples R China
Recently, the unsupervised extreme learning machine (UELM) technique as a nonlinear data mining approach has been employed to diagnose nonlinear process faults. However, during the dimensionality reduction of process ... 详细信息
来源: 评论
Gaussian feature learning based on variational autoencoder for improving nonlinear process monitoring
收藏 引用
JOURNAL OF process CONTROL 2019年 75卷 136-155页
作者: Zhang, Zehan Jiang, Teng Zhan, Chengjun Yang, Yupu Shanghai Jiao Tong Univ Dept Automat Minist Educ Syst Control & Informat Proc Key Lab Shanghai 200240 Peoples R China
Deep learning algorithms, especially the autoencoders, have been applied in nonlinear process monitoring recently. However, the features extracted by the autoencoders can hardly follow the Gaussian distribution, conse... 详细信息
来源: 评论
Learning Deep Correlated Representations for nonlinear process monitoring
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2019年 第12期15卷 6200-6209页
作者: Jiang, Qingchao Yan, Xuefeng East China Univ Sci & Technol Minist Educ Key Lab Adv Control & Optimizat Chem Proc Shanghai 200237 Peoples R China
Deep neural network (DNN) extracts hierarchical representations from process data and is promising for nonlinear process monitoring. Obtaining meaningful representations and generating efficient fault detection residu... 详细信息
来源: 评论
Improved nonlinear process monitoring based on ensemble KPCA with local structure analysis
收藏 引用
CHEMICAL ENGINEERING RESEARCH & DESIGN 2019年 142卷 355-368页
作者: Cui, Ping Zhan, Chengjun Yang, Yupu Shanghai Jiao Tong Univ Dept Automat Minist Educ Syst Control & Informat Proc Key Lab Shanghai 200240 Peoples R China
A new nonlinear process monitoring algorithm called ensemble local kernel principal component analysis (ELKPCA) is proposed. Conventionally, the performance of kernel-based model depends on the width parameter selecte... 详细信息
来源: 评论