咨询与建议

限定检索结果

文献类型

  • 74 篇 期刊文献
  • 22 篇 会议

馆藏范围

  • 96 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 92 篇 工学
    • 59 篇 计算机科学与技术...
    • 34 篇 电气工程
    • 27 篇 控制科学与工程
    • 6 篇 机械工程
    • 6 篇 软件工程
    • 5 篇 信息与通信工程
    • 4 篇 仪器科学与技术
    • 4 篇 石油与天然气工程
    • 3 篇 动力工程及工程热...
    • 3 篇 化学工程与技术
    • 2 篇 力学(可授工学、理...
    • 2 篇 环境科学与工程(可...
    • 1 篇 电子科学与技术(可...
    • 1 篇 测绘科学与技术
  • 16 篇 管理学
    • 16 篇 管理科学与工程(可...
  • 14 篇 理学
    • 8 篇 数学
    • 6 篇 系统科学
    • 3 篇 物理学
    • 1 篇 化学
  • 6 篇 医学
    • 6 篇 临床医学
    • 3 篇 基础医学(可授医学...
    • 1 篇 特种医学
  • 1 篇 法学
    • 1 篇 法学

主题

  • 96 篇 nonlinear system...
  • 6 篇 fuzzy neural net...
  • 6 篇 nonlinear system...
  • 4 篇 fast convergence
  • 3 篇 fuzzy modeling
  • 3 篇 b-splines
  • 3 篇 deep learning
  • 3 篇 self-organizing ...
  • 3 篇 neural networks
  • 3 篇 fuzzy systems
  • 3 篇 modular neural n...
  • 2 篇 hydraulic actuat...
  • 2 篇 rbf network
  • 2 篇 differential evo...
  • 2 篇 organic rankine ...
  • 2 篇 linearization
  • 2 篇 volterra models
  • 2 篇 takagi-sugeno fu...
  • 2 篇 optimization
  • 2 篇 evolutionary mul...

机构

  • 19 篇 beijing univ tec...
  • 14 篇 beijing key lab ...
  • 3 篇 beijing univ tec...
  • 2 篇 beijing univ tec...
  • 2 篇 beijing adv inno...
  • 2 篇 huaiyin inst tec...
  • 2 篇 chinese acad sci...
  • 2 篇 beijing lab smar...
  • 2 篇 faculty of infor...
  • 2 篇 shu te univ dept...
  • 2 篇 shanghai jiao to...
  • 2 篇 collaborat innov...
  • 2 篇 northeastern uni...
  • 2 篇 changsha univ sc...
  • 2 篇 cent s univ sch ...
  • 1 篇 sun yat sen univ...
  • 1 篇 univ grenoble 1 ...
  • 1 篇 jiangnan univ ke...
  • 1 篇 shanghai res ctr...
  • 1 篇 nanyang technol ...

作者

  • 17 篇 qiao junfei
  • 7 篇 li wenjing
  • 6 篇 qiao jun-fei
  • 5 篇 han hong-gui
  • 4 篇 meng xi
  • 4 篇 yu wen
  • 3 篇 yang cuili
  • 3 篇 junfei qiao
  • 3 篇 gan q
  • 3 篇 harris cj
  • 3 篇 cuili yang
  • 3 篇 wang gongming
  • 2 篇 chang wei-der
  • 2 篇 uosaki k
  • 2 篇 peng hui
  • 2 篇 guo xin
  • 2 篇 marmarelis vz
  • 2 篇 hatanaka t
  • 2 篇 li meng
  • 2 篇 zhou hongbiao

语言

  • 87 篇 英文
  • 8 篇 其他
  • 1 篇 中文
检索条件"主题词=Nonlinear system modeling"
96 条 记 录,以下是1-10 订阅
排序:
nonlinear system modeling Using RBF Networks for Industrial Application
收藏 引用
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS 2018年 第3期14卷 931-940页
作者: Meng, Xi Rozycki, Pawel Qiao, Jun-Fei Wilamowski, Bogdan M. Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Univ Informat Technol & Management PL-35225 Rzeszow Poland Auburn Univ Dept Elect & Comp Engn Auburn AL 36849 USA
Radial basis function (RBF) networks, because of their universal approximation ability, have been widely applied to industrial process modeling. In this study, an Improved ErrCor (IErrCor) algorithm-an extension of er... 详细信息
来源: 评论
nonlinear system modeling and damping implementation of a boring bar
收藏 引用
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY 2019年 第1-4期104卷 921-930页
作者: Li, Lie Sun, Beibei Hua, Haitao Southeast Univ Sch Mech Engn Nanjing 211189 Jiangsu Peoples R China
Vibration is a concern in the boring process due to the low dynamic stiffness of long cantilever boring bars. Vibration has a negative impact on the processing quality and processing performance. Dynamic vibration abs... 详细信息
来源: 评论
nonlinear system modeling and identification using Volterra-PARAFAC models
收藏 引用
INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING 2012年 第1期26卷 30-53页
作者: Favier, Gerard Kibangou, Alain Y. Bouilloc, Thomas Univ Nice Sophia Antipolis CNRS Lab I3S F-06903 Sophia Antipolis France Univ Grenoble 1 Syst Control Dept Gipsa Lab CNRS F-38402 St Martin Dheres France
Discrete-time Volterra models are widely used in various application areas. Their usefulness is mainly because of their ability to approximate to an arbitrary precision any fading memory nonlinear system and to their ... 详细信息
来源: 评论
nonlinear system modeling using self-organizing fuzzy neural networks for industrial applications
收藏 引用
APPLIED INTELLIGENCE 2020年 第5期50卷 1657-1672页
作者: Zhou, Hongbiao Zhao, Huanyu Zhang, Yu Huaiyin Inst Technol Fac Automat Huaian 223003 Peoples R China
In this paper, a novel self-organizing fuzzy neural network with an adaptive learning algorithm (SOFNN-ALA) for nonlinear system modeling and identification in industrial processes is proposed. To efficiently enhance ... 详细信息
来源: 评论
nonlinear system modeling using a self-organizing recurrent radial basis function neural network
收藏 引用
APPLIED SOFT COMPUTING 2018年 71卷 1105-1116页
作者: Han, Hong-Gui Guo, Ya-Nan Qiao, Jun-Fei Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China Beijing Univ Technol Beijing Key Lab Computat Intelligence & Intellige Beijing Peoples R China
In this paper, an efficient self-organizing recurrent radial basis function neural network (RRBFNN), is developed for nonlinear system modeling. In RRBFNN, a two-steps learning approach is introduced during the learni... 详细信息
来源: 评论
nonlinear system modeling and application based on restricted Boltzmann machine and improved BP neural network
收藏 引用
APPLIED INTELLIGENCE 2021年 第1期51卷 37-50页
作者: Qiao, Junfei Wang, Longyang Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China
Aiming at the complexity, nonlinearity and difficulty in modeling of nonlinear system. In this paper, an improved back-propagation(BP) neural network based on restricted boltzmann machine(RBM-IBPNN) is proposed for no... 详细信息
来源: 评论
nonlinear system modeling via Hybrid system Representation of Recurrent Fuzzy systems
Nonlinear System Modeling via Hybrid System Representation o...
收藏 引用
2010 IEEE World Congress on Computational Intelligence
作者: Schwung, Andreas Adamy, Juergen Tech Univ Darmstadt Inst Automat Control Control Theory & Robot Lab D-64283 Darmstadt Germany
This paper proposes a new approach to system modeling using continuous-time recurrent fuzzy systems (CTRFS). The approach is based on the representation of CTRFS as hybrid systems. With this representation, various fo... 详细信息
来源: 评论
Design of a self-organizing reciprocal modular neural network for nonlinear system modeling
收藏 引用
NEUROCOMPUTING 2020年 411卷 327-339页
作者: Li, Wenjing Li, Meng Zhang, Junkai Qiao, Junfei Beijing Univ Technol Fac Informat Technol Beijing 100124 Peoples R China Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China Beijing Adv Innovat Ctr Future Internet Technol Beijing 100124 Peoples R China
Aiming to improve the model's generalization performance for nonlinear system modeling, a self organizing reciprocal modular neural network (SORMNN) is proposed in the present study, which imitates the modular str... 详细信息
来源: 评论
An adaptive second order fuzzy neural network for nonlinear system modeling
收藏 引用
NEUROCOMPUTING 2016年 214卷 837-847页
作者: Han, Hong-Gui Ge, Lu-Ming Qiao, Jun-Fei Beijing Univ Technol Coll Elect & Control Engn Beijing 100124 Peoples R China Beijing Key Lab Computat Intelligence & Intellige Beijing 100124 Peoples R China
In this paper, an adaptive second order algorithm (ASOA) has been developed to train the fuzzy neural network (FNN) to achieve fast and robust convergence for nonlinear system modeling. Different from recent studies, ... 详细信息
来源: 评论
Differential evolution- based nonlinear system modeling using a bilinear series model
收藏 引用
APPLIED SOFT COMPUTING 2012年 第11期12卷 3401-3407页
作者: Chang, Wei-Der Shu Te Univ Dept Comp & Commun Kaohsiung 824 Taiwan
This paper presents a new modeling method for nonlinear dynamic systems based on using bilinear series model. Basically, bilinear model is an extension of infinite impulse response (IIR) filter and belongs to the recu... 详细信息
来源: 评论