咨询与建议

限定检索结果

文献类型

  • 51 篇 会议
  • 47 篇 期刊文献

馆藏范围

  • 98 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 86 篇 工学
    • 43 篇 计算机科学与技术...
    • 35 篇 电气工程
    • 10 篇 软件工程
    • 9 篇 信息与通信工程
    • 7 篇 仪器科学与技术
    • 6 篇 测绘科学与技术
    • 4 篇 控制科学与工程
    • 4 篇 环境科学与工程(可...
    • 3 篇 机械工程
    • 3 篇 电子科学与技术(可...
    • 2 篇 土木工程
    • 2 篇 交通运输工程
    • 1 篇 水利工程
    • 1 篇 船舶与海洋工程
    • 1 篇 生物医学工程(可授...
  • 44 篇 理学
    • 18 篇 物理学
    • 14 篇 数学
    • 7 篇 地球物理学
    • 4 篇 系统科学
    • 3 篇 统计学(可授理学、...
    • 1 篇 化学
    • 1 篇 生物学
  • 12 篇 医学
    • 10 篇 临床医学
    • 2 篇 基础医学(可授医学...
  • 5 篇 管理学
    • 5 篇 管理科学与工程(可...
    • 1 篇 工商管理
  • 2 篇 经济学
    • 2 篇 应用经济学

主题

  • 98 篇 nonnegative tens...
  • 13 篇 nonnegative matr...
  • 7 篇 source separatio...
  • 4 篇 clustering
  • 4 篇 blind source sep...
  • 4 篇 tensors
  • 4 篇 low-rank approxi...
  • 3 篇 covid-19
  • 3 篇 audio source sep...
  • 3 篇 hyperspectral un...
  • 3 篇 parafac
  • 3 篇 tucker decomposi...
  • 3 篇 feature extracti...
  • 3 篇 tensor
  • 3 篇 classification
  • 3 篇 matrix decomposi...
  • 3 篇 tensor train
  • 2 篇 pattern mining
  • 2 篇 3d facial expres...
  • 2 篇 accelerated prox...

机构

  • 3 篇 zhejiang univ co...
  • 3 篇 russian acad sci...
  • 3 篇 griffith univ sc...
  • 2 篇 lomonosov moscow...
  • 2 篇 mit media lab ca...
  • 2 篇 queensland univ ...
  • 2 篇 queensland univ ...
  • 2 篇 riken bsi lab ad...
  • 2 篇 wroclaw univ sci...
  • 1 篇 ircam-cnrs-upmc ...
  • 1 篇 univ texas austi...
  • 1 篇 san jose state u...
  • 1 篇 wake forest univ...
  • 1 篇 jiangnan univ sc...
  • 1 篇 ntt corp ntt net...
  • 1 篇 kunming univ sci...
  • 1 篇 michigan state u...
  • 1 篇 los alamos natl ...
  • 1 篇 waseda univ sch ...
  • 1 篇 waseda univ grad...

作者

  • 6 篇 cichocki andrzej
  • 5 篇 balasubramaniam ...
  • 5 篇 ozerov alexey
  • 5 篇 nayak richi
  • 3 篇 qian yuntao
  • 3 篇 anh huy phan
  • 3 篇 xiong fengchao
  • 3 篇 zdunek rafal
  • 3 篇 zhou jun
  • 2 篇 yuen chau
  • 2 篇 fras mieszko
  • 2 篇 badeau roland
  • 2 篇 guan wei
  • 2 篇 lanman douglas
  • 2 篇 zhou guoxu
  • 2 篇 perez patrick
  • 2 篇 qi geqi
  • 2 篇 alexandrov boian...
  • 2 篇 liutkus antoine
  • 2 篇 hirsch matthew

语言

  • 95 篇 英文
  • 3 篇 其他
检索条件"主题词=Nonnegative tensor factorization"
98 条 记 录,以下是41-50 订阅
排序:
A proximal ANLS algorithm for nonnegative tensor factorization with a periodic enhanced line search
收藏 引用
APPLICATIONS OF MATHEMATICS 2013年 第5期58卷 493-509页
作者: Bunker, Douglas Han, Lixing Zhang, Shuhua Univ Michigan Dept Math Flint MI 48502 USA Tianjin Univ Finance & Econ Tianjin 300222 Peoples R China
The Alternating nonnegative Least Squares (ANLS) method is commonly used for solving nonnegative tensor factorization problems. In this paper, we focus on algorithmic improvement of this method. We present a Proximal ... 详细信息
来源: 评论
Coding-Based Informed Source Separation: nonnegative tensor factorization Approach
收藏 引用
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING 2013年 第8期21卷 1699-1712页
作者: Ozerov, Alexey Liutkus, Antoine Badeau, Roland Richard, Gael Technicolor Res & Innovat F-35576 Cesson Sevigne France Telecom ParisTech CNRS LTCI Inst Mines Telecom F-75014 Paris France
Informed source separation (ISS) aims at reliably recovering sources from a mixture. To this purpose, it relies on the assumption that the original sources are available during an encoding stage. Given both sources an... 详细信息
来源: 评论
Fast nonnegative tensor factorizations with tensor Train Model
收藏 引用
LOBACHEVSKII JOURNAL OF MATHEMATICS 2022年 第4期43卷 882-894页
作者: Shcherbakova, E. M. Tyrtyshnikov, E. E. Lomonosov Moscow State Univ Moscow 119991 Russia Russian Acad Sci Marchuk Inst Numer Math Moscow 119333 Russia
tensor train model is a low-rank approximation for multidimensional data. In this article we demonstrate how it can be succesfully used for fast computation of nonnegative tensor train, nonnegative canonical and nonne... 详细信息
来源: 评论
Multi-domain Feature Extraction from surface EMG Signals Using nonnegative tensor factorization
Multi-domain Feature Extraction from surface EMG Signals Usi...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (IEEE BIBM)
作者: Xie, Ping Song, Yan Yanshan Univ Inst Elect Engn Qinhuangdao 066004 Peoples R China
To propose a multi-domain feature extraction method of surface EMG signals is of great significance to EMG-based human-computer interface (HCI). In this paper, nonnegative Tucker decomposition (NTD)-one model of nonne... 详细信息
来源: 评论
Modeling Hierarchical Seasonality Through Low-Rank tensor Decompositions in Time Series Analysis
收藏 引用
IEEE ACCESS 2023年 11卷 85770-85784页
作者: Barsbey, Melih Cemgil, Ail Taylan Bogazici Univ Dept Comp Engn TR-34342 Istanbul Turkiye
Accurately representing periodic behavior is a frequently encountered challenge in modeling time series. This is especially true for observations where multiple, nested seasonalities are present, which is often encoun... 详细信息
来源: 评论
Minimum-Volume Non-Negative Block-Term Decomposition: Blind Data Fusion and Unmixing with Estimation of the Number of Endmembers  32
Minimum-Volume Non-Negative Block-Term Decomposition: Blind ...
收藏 引用
32nd European Signal Processing Conference (EUSIPCO)
作者: Prevost, Clemence Leplat, Valentin Univ Lille CNRS Cent Lille UMR 9189 CRIStAL F-59000 Lille France Innopolis Univ Innopolis Russia
This paper introduces a family of efficient algorithms for joint super-resolution and unmixing in remote sensing. They utilize coupled tensor decompositions with minimum-volume regularizations and incorporate the beta... 详细信息
来源: 评论
nonnegative Block-Term Decomposition with the β-Divergence: Joint Data Fusion and Blind Spectral Unmixing  48
Nonnegative Block-Term Decomposition with the β-Divergence:...
收藏 引用
48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
作者: Prévost, C. Leplat, V. University of Lille Cnrs Centrale Lille Umr 9189 CRIStAL LilleF-59000 France Moscow Russia
We present a new method for solving simultaneously hyperspectral super-resolution and spectral unmixing of the unknown super-resolution image. Our method relies on three key elements: (1) the nonnegative decomposition... 详细信息
来源: 评论
A Methodology to Attain Public Transit Origin-Destination Mobility Patterns Using Multi-Layered Mesoscopic Analysis
收藏 引用
IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS 2021年 第10期22卷 6256-6274页
作者: Qi, Geqi Ceder, Avishai Huang, Ailing Guan, Wei Beijing Jiaotong Univ Key Lab Transport Ind Big Data Applicat Technol C Minist Transport Beijing 100044 Peoples R China Beijing Jiaotong Univ Natl Engn Lab Integrated Transportat Big Data App Beijing 100044 Peoples R China Technion Israel Inst Technol Fac Civil & Environm Engn IL-32000 Haifa Israel Technion Israel Inst Technol Transportat Res Inst IL-32000 Haifa Israel
Knowledge about mobility patterns has become increasingly important to urban development. In this work, public transit origin-destination (OD) mobility patterns are undergoing meso-level analysis in using the advantag... 详细信息
来源: 评论
Bayesian Allocation Model: Marginal Likelihood-Based Model Selection for Count tensors
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING 2021年 第3期15卷 560-573页
作者: Yldrm, Sinan Kurutmaz, M. Burak Barsbey, Melih Simsekli, Umut Cemgil, A. Taylan Sabanci Univ Fac Engn & Nat Sci TR-34956 Istanbul Turkey Gazici Univ Dept Comp Engn TR-34342 Istanbul Turkey TELECOM ParisTech F-75013 Paris France
In this article, we introduce a dynamic generative model, the Bayesian allocation model (BAM), for modeling count data. BAM covers various probabilistic nonnegative tensor factorization (NTF) and topic models under on... 详细信息
来源: 评论
nonnegative tensor-Train Low-Rank Approximations of the Smoluchowski Coagulation Equation  13th
Nonnegative Tensor-Train Low-Rank Approximations of the Smol...
收藏 引用
13th International Conference on Large-Scale ScientificComputations (LSSC)
作者: Manzini, Gianmarco Skau, Erik Truong, Duc P. Vangara, Raviteja Los Alamos Natl Lab Div Theoret Los Alamos NM 87545 USA Los Alamos Natl Lab Comp Computat & Stat Div Los Alamos NM 87545 USA
We present a finite difference approximation of the nonnegative solutions of the two dimensional Smoluchowski equation by a nonnegative low-order tensor factorization. Two different implementations are compared. The f... 详细信息
来源: 评论