咨询与建议

限定检索结果

文献类型

  • 1 篇 期刊文献

馆藏范围

  • 1 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1 篇 工学
    • 1 篇 石油与天然气工程

主题

  • 1 篇 big data
  • 1 篇 NOT FOUND
  • 1 篇 multiple linear ...
  • 1 篇 data analysis
  • 1 篇 unconventional o...

机构

  • 1 篇 texas a&m univ s...
  • 1 篇 texas a&m univ h...
  • 1 篇 texas a&m univ d...

作者

  • 1 篇 cai quan
  • 1 篇 yu wei
  • 1 篇 wang suojin
  • 1 篇 liang jenn-tai
  • 1 篇 liang hwa chi
  • 1 篇 wu kan

语言

  • 1 篇 英文
检索条件"主题词=Nonparametric Smoothing Models"
1 条 记 录,以下是1-10 订阅
排序:
Development of a Powerful Data-Analysis Tool Using nonparametric smoothing models To Identify Drillsites in Tight Shale Reservoirs With High Economic Potential
收藏 引用
SPE JOURNAL 2018年 第3期23卷 719-736页
作者: Cai, Quan Yu, Wei Liang, Hwa Chi Liang, Jenn-Tai Wang, Suojin Wu, Kan Texas A&M Univ Dept Stat College Stn TX 77843 USA Texas A&M Univ Harold Vance Dept Petr Engn College Stn TX 77843 USA Texas A&M Univ Stat & Epidemiol & Biostat College Stn TX 77843 USA
The oil-and-gas industry is entering an era of "big data" because of the huge number of wells drilled with the rapid development of unconventional oil-and-gas reservoirs during the past decade. The massive a... 详细信息
来源: 评论