咨询与建议

限定检索结果

文献类型

  • 8 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 11 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学

主题

  • 15 篇 object class rec...
  • 4 篇 sift
  • 2 篇 appearance model...
  • 2 篇 local binary pat...
  • 2 篇 features matchin...
  • 2 篇 facial detection
  • 2 篇 invariant descri...
  • 1 篇 multi feature
  • 1 篇 object detection
  • 1 篇 clustering
  • 1 篇 snow
  • 1 篇 sparse graph
  • 1 篇 semantic object ...
  • 1 篇 model learning
  • 1 篇 deep neural netw...
  • 1 篇 part constellati...
  • 1 篇 2d/3d pose
  • 1 篇 neuroevolution
  • 1 篇 localized featur...
  • 1 篇 weakly supervise...

机构

  • 1 篇 eth comp vis lab...
  • 1 篇 univ jijel dept ...
  • 1 篇 univ jijel comp ...
  • 1 篇 heidelberg univ ...
  • 1 篇 shanghai jiao to...
  • 1 篇 natl inst astrop...
  • 1 篇 adv technol appl...
  • 1 篇 univ freiburg in...
  • 1 篇 universiti malay...
  • 1 篇 natl univ def te...
  • 1 篇 hebrew univ jeru...
  • 1 篇 esat psi visics ...
  • 1 篇 univ sains malay...
  • 1 篇 hebrew univ jeru...
  • 1 篇 univ british col...
  • 1 篇 univ lyon liris ...
  • 1 篇 school of electr...
  • 1 篇 univ lyon 2 univ...
  • 1 篇 univ sains malay...
  • 1 篇 nanyang technol ...

作者

  • 2 篇 ferrari vittorio
  • 2 篇 rajeswari mandav...
  • 2 篇 taffar mokhtar
  • 2 篇 miguet serge
  • 1 篇 islam saiful
  • 1 篇 nasrin m. makbol
  • 1 篇 van gool luc
  • 1 篇 zhou li
  • 1 篇 zhou zongtan
  • 1 篇 zhang wenjun
  • 1 篇 hu dewen
  • 1 篇 enrique sucar l.
  • 1 篇 sluzek andrzej
  • 1 篇 zhang rui
  • 1 篇 lowe david g.
  • 1 篇 mutch jim
  • 1 篇 weinshall daphna
  • 1 篇 wu jianzhai
  • 1 篇 taha h. rassem
  • 1 篇 leibe bastian

语言

  • 15 篇 英文
检索条件"主题词=Object Class Recognition"
15 条 记 录,以下是1-10 订阅
排序:
object class recognition using Combination of Colour Dense SIFT and Texture descriptors  2019
Object Class Recognition using Combination of Colour Dense S...
收藏 引用
Proceedings of the 2019 2nd Artificial Intelligence and Cloud Computing Conference
作者: Taha H. Rassem Nasrin M. Makbol Bee Ee Khoo Universiti Malaysia Pahang School of Electrical and Electronic Engineering Universiti Sains Malaysia Penang Malaysia
object class recognition has recently become one of the most popular research fields. This is due to its importance in many applications such as image classification, retrieval, indexing, and searching. The main aim o... 详细信息
来源: 评论
Local appearance modeling for objects class recognition
收藏 引用
PATTERN ANALYSIS AND APPLICATIONS 2019年 第2期22卷 439-455页
作者: Taffar, Mokhtar Miguet, Serge Univ Jijel Dept Comp Sci BP 98 Ouled Aissa 18000 Jijel Algeria Univ Lyon 2 Univ Lyon UMR CNRS 5205 LIRIS 5 Ave Pierre Mendes FranceBat C 123 F-69676 Lyon France
In this work, we propose a new formulation of the objects modeling combining geometry and appearance;it is useful for detection and recognition. The object local appearance location is referenced with respect to an in... 详细信息
来源: 评论
Do Semantic Parts Emerge in Convolutional Neural Networks?
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2018年 第5期126卷 476-494页
作者: Gonzalez-Garcia, Abel Modolo, Davide Ferrari, Vittorio Univ Edinburgh Sch Informat IPAB Crichton St 10 Edinburgh EH8 9AB Midlothian Scotland
Semantic object parts can be useful for several visual recognition tasks. Lately, these tasks have been addressed using Convolutional Neural Networks (CNN), achieving outstanding results. In this work we study whether... 详细信息
来源: 评论
Face class Modeling based on Local Appearance for recognition  6
Face Class Modeling based on Local Appearance for Recognitio...
收藏 引用
6th International Conference on Pattern recognition Applications and Methods (ICPRAM)
作者: Taffar, Mokhtar Miguet, Serge Univ Jijel Comp Sc Dept BP 98 Ouled Aissa 18000 Jijel Algeria Univ Lyon LIRIS CNRS UMR 5205 5 Av Pierre Mendes France F-69676 Bron France
This work proposes a new formulation of the objects modeling combining geometry and appearance. The object local appearance location is referenced with respect to an invariant which is a geometric landmark. The appear... 详细信息
来源: 评论
AN EVALUATION OF LOCAL IMAGE FEATURES FOR object class recognition
AN EVALUATION OF LOCAL IMAGE FEATURES FOR OBJECT CLASS RECOG...
收藏 引用
5th International Conference on Computer Vision Theory and Applications (VISAPP 2010)
作者: Islam, Saiful Sluzek, Andrzej Nanyang Technol Univ Sch Comp Engn Ctr Computat Intelligence Singapore 639798 Singapore
The use of local image features (LIP) for object class recognition is becoming increasingly popular. To better understand the suitability and power of existing LIFs for object class recognition, a simple but useful me... 详细信息
来源: 评论
MULTI FEATURE BASED object class recognition
MULTI FEATURE BASED OBJECT CLASS RECOGNITION
收藏 引用
International Conference on Digital Image Processing
作者: Manshor, Noridayu Rajeswari, Mandava Ramachandram, Dhanesh Univ Sains Malaysia Sch Comp Sci Comp Vis Res Grp George Town 11800 Malaysia
In object class recognition, lots of past researches focused on the local descriptors such as SIFT to categorize the variation of objects belonging to the same category in different poses, sizes, and appearance. Howev... 详细信息
来源: 评论
object class recognition and localization using sparse features with limited receptive fields
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2008年 第1期80卷 45-57页
作者: Mutch, Jim Lowe, David G. MIT Dept Brain & Cognit Sci Cambridge MA 02139 USA Univ British Columbia Dept Comp Sci Vancouver BC V6T 1W5 Canada
We investigate the role of sparsity and localized features in a biologically-inspired model of visual object classification. As in the model of Serre, Wolf, and Poggio, we first apply Gabor filters at all positions an... 详细信息
来源: 评论
object class recognition Using NEAT-evolved Artificial Neural Network
Object Class Recognition Using NEAT-evolved Artificial Neura...
收藏 引用
5th International Conference on Computer Graphics, Imaging and Visualization (CGIV)
作者: Hasanat, Mozaherul Hoque Abul Harun, Siti Zubaidah Ramachandran, Dhanesh Rajeswari, Mandava Univ Sains Malaysia Sch Comp Sci Comp Vis Res Grp George Town Malaysia
object class recognition is a highly challenging area in computer vision. and machine learning. In this paper;we introduce a novel approach to object class recognition using NeuroEvolution of Augmenting Topologies (NE... 详细信息
来源: 评论
Learning a Part Vocabulary by Clustering Ensemble for object class recognition
Learning a Part Vocabulary by Clustering Ensemble for Object...
收藏 引用
第四届全国信息检索与内容安全学术会议
作者: Yang LINYUN~* Wen MING Zhuo QING Wang WENYUAN Department of Automation,Tsinghua University,Beijing 100084,China
In this paPer we present a novel method for object class recognition.A vocabulary of object parts is automatically constructed from sample images of the object class by random projection based clustering ensemble. Ima... 详细信息
来源: 评论
A Bayesian approach for object classification based on clusters of SIFT local features
收藏 引用
EXPERT SYSTEMS WITH APPLICATIONS 2012年 第2期39卷 1679-1686页
作者: Chang, Leonardo Duarte, Miriam M. Enrique Sucar, L. Morales, Eduardo F. Natl Inst Astrophys Opt & Elect Mexico City 72840 DF Mexico Adv Technol Applicat Ctr Havana Cuba
Several methods have been presented in the literature that successfully used SIFT features for object identification, as they are reasonably invariant to translation, rotation, scale, illumination and partial occlusio... 详细信息
来源: 评论