咨询与建议

限定检索结果

文献类型

  • 8 篇 会议
  • 7 篇 期刊文献

馆藏范围

  • 15 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 14 篇 工学
    • 11 篇 计算机科学与技术...
    • 5 篇 电气工程
    • 1 篇 机械工程
    • 1 篇 信息与通信工程
    • 1 篇 控制科学与工程
    • 1 篇 生物医学工程(可授...
    • 1 篇 软件工程
  • 3 篇 医学
    • 3 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...
  • 1 篇 理学
    • 1 篇 物理学
    • 1 篇 生物学

主题

  • 15 篇 object class rec...
  • 4 篇 sift
  • 2 篇 appearance model...
  • 2 篇 local binary pat...
  • 2 篇 features matchin...
  • 2 篇 facial detection
  • 2 篇 invariant descri...
  • 1 篇 multi feature
  • 1 篇 object detection
  • 1 篇 clustering
  • 1 篇 snow
  • 1 篇 sparse graph
  • 1 篇 semantic object ...
  • 1 篇 model learning
  • 1 篇 deep neural netw...
  • 1 篇 part constellati...
  • 1 篇 2d/3d pose
  • 1 篇 neuroevolution
  • 1 篇 localized featur...
  • 1 篇 weakly supervise...

机构

  • 1 篇 eth comp vis lab...
  • 1 篇 univ jijel dept ...
  • 1 篇 univ jijel comp ...
  • 1 篇 heidelberg univ ...
  • 1 篇 shanghai jiao to...
  • 1 篇 natl inst astrop...
  • 1 篇 adv technol appl...
  • 1 篇 univ freiburg in...
  • 1 篇 universiti malay...
  • 1 篇 natl univ def te...
  • 1 篇 hebrew univ jeru...
  • 1 篇 esat psi visics ...
  • 1 篇 univ sains malay...
  • 1 篇 hebrew univ jeru...
  • 1 篇 univ british col...
  • 1 篇 univ lyon liris ...
  • 1 篇 school of electr...
  • 1 篇 univ lyon 2 univ...
  • 1 篇 univ sains malay...
  • 1 篇 nanyang technol ...

作者

  • 2 篇 ferrari vittorio
  • 2 篇 rajeswari mandav...
  • 2 篇 taffar mokhtar
  • 2 篇 miguet serge
  • 1 篇 islam saiful
  • 1 篇 nasrin m. makbol
  • 1 篇 van gool luc
  • 1 篇 zhou li
  • 1 篇 zhou zongtan
  • 1 篇 zhang wenjun
  • 1 篇 hu dewen
  • 1 篇 enrique sucar l.
  • 1 篇 sluzek andrzej
  • 1 篇 zhang rui
  • 1 篇 lowe david g.
  • 1 篇 mutch jim
  • 1 篇 weinshall daphna
  • 1 篇 wu jianzhai
  • 1 篇 taha h. rassem
  • 1 篇 leibe bastian

语言

  • 15 篇 英文
检索条件"主题词=Object Class Recognition"
15 条 记 录,以下是11-20 订阅
排序:
A Study of Parts-Based object class Detection Using Complete Graphs
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2010年 第1-2期87卷 93-117页
作者: Bergtholdt, Martin Kappes, Joerg Schmidt, Stefan Schnoerr, Christoph Heidelberg Univ Dept Math & Comp Sci D-69115 Heidelberg Germany
object detection is one of the key components in modern computer vision systems. While the detection of a specific rigid object under changing viewpoints was considered hard just a few years ago, current research stri... 详细信息
来源: 评论
Using Multi-view recognition and Meta-data Annotation to Guide a Robot's Attention
收藏 引用
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH 2009年 第8期28卷 976-998页
作者: Thomas, Alexander Ferrari, Vittorio Leibe, Bastian Tuytelaars, Tinne Van Gool, Luc ESAT PSI VISICS KU Leuven B-3001 Heverlee Belgium ETH Comp Vis Lab CH-8092 Zurich Switzerland Rhein Westfal TH Aachen UMIC Res Ctr D-52056 Aachen Germany
In the transition from industrial to service robotics, robots will have to deal with increasingly unpredictable and variable environments. We present a system that is able to recognize objects of a certain class in an... 详细信息
来源: 评论
Efficient learning of relational object class models
收藏 引用
INTERNATIONAL JOURNAL OF COMPUTER VISION 2008年 第1-3期77卷 175-198页
作者: Bar-Hillel, Aharon Weinshall, Daphna Intel Res Israel IL-31015 Haifa Israel Hebrew Univ Jerusalem Dept Comp Sci IL-91904 Jerusalem Israel Hebrew Univ Jerusalem Ctr Neural Computat IL-91904 Jerusalem Israel
We present an efficient method for learning part-based object class models from unsegmented images represented as sets of salient features. A model includes parts' appearance, as well as location and scale relatio... 详细信息
来源: 评论
Learning object classes from image thumbnails through deep neural networks
Learning object classes from image thumbnails through deep n...
收藏 引用
33rd IEEE International Conference on Acoustics, Speech and Signal Processing
作者: Chen, Erkang Yang, Xiaokang Zha, Hongyuan Zhang, Rui Zhang, Wenjun Shanghai Jiao Tong Univ Inst Image Commun & Informat Proc Shanghai Peoples R China Georgia Inst Technol Coll Comp Atlanta GA USA Univ Freiburg Inst Comp Sci Freiburg Germany
We propose a new approach for recognizing object classes which is based on the intuitive idea that human beings are able to perform the task well given only thumbnails (coarse scale version) of images. Unlike previous... 详细信息
来源: 评论
Learning Spatial Prior with Automatically Labeled Landmarks
Learning Spatial Prior with Automatically Labeled Landmarks
收藏 引用
3rd International Conference on Intelligent System and Knowledge Engineering
作者: Wu, Jianzhai Zhou, Zongtan Zhou, Li Hu, Dewen Natl Univ Def Technol Dept Automat Control Coll Mechatron & Automat Changsha 410073 Hunan Peoples R China
We propose a method of automatically labeling landmarks on target images, which are used for training a constellation model to recognize general object class. First, we randomly sample local features (parts) and gener... 详细信息
来源: 评论