咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 14 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 9 篇 理学
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 34 篇 object detection...
  • 11 篇 deep learning
  • 4 篇 yolo
  • 4 篇 image processing
  • 3 篇 yolov3
  • 3 篇 rice disease
  • 3 篇 machine learning
  • 3 篇 computer vision
  • 2 篇 super-resolution...
  • 2 篇 construction sit...
  • 2 篇 yolov8
  • 2 篇 convolutional ne...
  • 1 篇 spiking neural n...
  • 1 篇 investment
  • 1 篇 image enhancemen...
  • 1 篇 3d lidar
  • 1 篇 super-resolution
  • 1 篇 label-free
  • 1 篇 sensor applicati...
  • 1 篇 deep learning mo...

机构

  • 2 篇 yonsei univ dept...
  • 2 篇 incheon natl uni...
  • 1 篇 university of sc...
  • 1 篇 kasetsart univ f...
  • 1 篇 kasetsart univ d...
  • 1 篇 univ pay & pays ...
  • 1 篇 univ tokyo grad ...
  • 1 篇 univ tokyo grad ...
  • 1 篇 fujian normal un...
  • 1 篇 northeastern uni...
  • 1 篇 wuhan univ sch c...
  • 1 篇 aalborg univ dep...
  • 1 篇 queens univ king...
  • 1 篇 zhejiang univers...
  • 1 篇 nanjing univ pos...
  • 1 篇 kasetsart univ f...
  • 1 篇 kyonggi univ col...
  • 1 篇 ajou univ dept b...
  • 1 篇 durban univ tech...
  • 1 篇 streamsage comca...

作者

  • 3 篇 kiratiratanapruk...
  • 3 篇 patarapuwadol su...
  • 3 篇 sinthupinyo wasi...
  • 3 篇 temniranrat pitc...
  • 2 篇 shao xinlei
  • 2 篇 hong taehoon
  • 2 篇 koo choongwan
  • 2 篇 chen yijia
  • 2 篇 zhao fan
  • 2 篇 wang jiaqi
  • 2 篇 kitvimonrat apic...
  • 2 篇 xi dianhan
  • 2 篇 mizuno katsunori
  • 2 篇 liu yongying
  • 1 篇 obermaisser roma...
  • 1 篇 fu liangzun
  • 1 篇 zhenrong zhang
  • 1 篇 torp kristian
  • 1 篇 chen jundong
  • 1 篇 yu yonghong

语言

  • 34 篇 英文
检索条件"主题词=Object Detection and Classification"
34 条 记 录,以下是11-20 订阅
排序:
A computer-aided diagnostic system for mammograms based on YOLOv3
收藏 引用
MULTIMEDIA TOOLS AND APPLICATIONS 2022年 第14期81卷 19257-19281页
作者: Zhao, Jianhui Chen, Tianquan Cai, Bo Wuhan Univ Sch Comp Sci Wuhan Hubei Peoples R China Wuhan Univ Sch Cyber Sci & Engn Wuhan Hubei Peoples R China
Due to a large amount of noise in medical images, the task of detecting and classifying the lesions of mammograms remains a huge challenge. Based on the existing deep learning methods, focusing on the diversity of bre... 详细信息
来源: 评论
An evolving ensemble model of multi-stream convolutional neural networks for human action recognition in still images
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2022年 第11期34卷 9205-9231页
作者: Slade, Sam Zhang, Li Yu, Yonghong Lim, Chee Peng Northumbria Univ Fac Engn & Environm Dept Comp & Informat Sci Newcastle Upon Tyne NE1 8ST Tyne & Wear England Royal Holloway Univ London Dept Comp Sci Surrey TW20 0EX England Nanjing Univ Posts & Telecommun Coll Tongda Nanjing Peoples R China Deakin Univ Inst Intelligent Syst Res & Innovat Waurn Ponds Vic 3216 Australia
Still image human action recognition (HAR) is a challenging problem owing to limited sources of information and large intra-class and small inter-class variations which requires highly discriminative features. Transfe... 详细信息
来源: 评论
Vision-Based Humanoid Robotic Palm for Amputee Person using Deep Learning  6
Vision-Based Humanoid Robotic Palm for Amputee Person using ...
收藏 引用
6th IEEE International Conference on Emerging Smart Computing and Informatics, ESCI 2024
作者: Shilaskar, Swati Bhatlawande, Shripad Bagmare, Sandesh Shejole, Prem Vishwakarma Institute of Technology Pune Department of Electronics and Telecommunication Engineering Pune411037 India
Amputees often have to face certain challenges due to their physical limitations. This naturally affects their work and have to encounter issues of unemployment. Overcoming people's perspective of an amputee not w... 详细信息
来源: 评论
Web-Based Traffic-Sign detection  23
Web-Based Traffic-Sign Detection
收藏 引用
31st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL GIS)
作者: Pedersen, Kasper F. Torp, Kristian Aalborg Univ Dept Comp Sci Aalborg Denmark
Detecting traffic signs on images has many applications within the transportation area, e.g., speed limit detection, navigation, asset management, and autonomous vehicles. A significant challenge in detecting traffic ... 详细信息
来源: 评论
Utilizing synthetic images to enhance the automated recognition of small-sized construction tools
收藏 引用
AUTOMATION IN CONSTRUCTION 2024年 163卷
作者: Han, Soeun Park, Wonjun Jeong, Kyumin Hong, Taehoon Koo, Choongwan Incheon Natl Univ Div Architecture & Urban Design Incheon 22012 South Korea Yonsei Univ Dept Architecture & Architectural Engn Seoul 03722 South Korea
Previous studies on vision-based classifiers often overlooked the need for detecting small-sized construction tools. Considering the substantial variations in these tools' size and shape, it is essential to train ... 详细信息
来源: 评论
COMPUTER VISION AND MACHINE LEARNING TO CREATE AN ADVANCED PICK-AND-PLACE ROBOTIC OPERATION USING INDUSTRY 4.0 TRENDS
COMPUTER VISION AND MACHINE LEARNING TO CREATE AN ADVANCED P...
收藏 引用
ASME International Mechanical Engineering Congress and Exposition (IMECE)
作者: Guerra-Zubiaga, David Franklin, Angelicia Escobar-Escobar, Diego Lemley, Timothey Hariri, Neeyaz Plattel, Jeremy Ham, Chan Kennesaw State Univ Dept Robot & Mechatron Engn Marietta GA 30144 USA
This paper explores integrating several Industry 4.0 trends within a Kawasaki Robot and Vanderlande intelligent manufacturing execution system located at Kennesaw State University (KSU) in the United States of America... 详细信息
来源: 评论
Super Resolution for Augmented Reality Applications
Super Resolution for Augmented Reality Applications
收藏 引用
41st IEEE Conference on Computer Communications (IEEE INFOCOM)
作者: Li, Vladislav Amponis, George Nebel, Jean-Christophe Argyriou, Vasileios Lagkas, Thomas Ouzounidis, Savvas Sarigiannidis, Panagiotis Kingston Univ Fac Sci Engn & Comp London England K3Y Ltd Res & Dev Dept Sofia Bulgaria Int Hellen Univ Dept Comp Sci Kavala Campus Kavala Greece South East European Res Ctr Thessaloniki Greece Univ Western Macedonia Dept Elect & Comp Engn Kozani Greece
Latest developments in machine learning (ML), adversarial networks, combined with increasingly powerful IoT devices via the introduction of efficient processors, are bringing about the implementation of near real-time... 详细信息
来源: 评论
A New Benchmark Model for the Automated detection and classification of a Wide Range of Heavy Construction Equipment
收藏 引用
JOURNAL OF MANAGEMENT IN ENGINEERING 2024年 第2期40卷
作者: Shin, Yejin Choi, Yujin Won, Jaeseung Hong, Taehoon Koo, Choongwan Incheon Natl Univ Div Architecture & Urban Design Incheon 22012 South Korea Sogang Univ Dept Artificial Intelligence Seoul 04107 South Korea Yonsei Univ Dept Architecture & Architectural Engn Seoul 03722 South Korea
The integration of computer vision technology into construction sites poses various challenges due to the complex environment. Prior studies on computer vision related to heavy construction equipment has primarily foc... 详细信息
来源: 评论
iSense: Intelligent object Sensing and Robot Tracking Through Networked Coupled Magnetic Resonant Coils
收藏 引用
IEEE INTERNET OF THINGS JOURNAL 2021年 第8期8卷 6637-6648页
作者: Li, Kai Muncuk, Ufuk Naderi, M. Yousof Chowdhury, Kaushik R. Northeastern Univ Dept Elect & Comp Engn Boston MA 02120 USA
object sensing and tracking using electric and magnetic fields allow intelligent interaction, automation, and adaptation in cyber-physical systems. Our approach, called iSense, uses a software-defined collaborative se... 详细信息
来源: 评论
Multiple object detection and classification on Uneven Terrain using Multi-Channel LIDAR for UGV
Multiple Object Detection and Classification on Uneven Terra...
收藏 引用
Conference on Unmanned Systems Technology XIV
作者: Cho, Kuk Baeg, Seung-Ho Park, Sangdeok Univ Sci & Technol 176 Gajung Dong Deajeon 305350 South Korea KITECH Ansan 426791 Gyeonggi Do South Korea
In this paper, we proposed multiple object detection and classification methods using a multi-channel light detection and ranging (LIDAR) device for an unmanned ground vehicle (UGV) in dense forest. The natural terrai... 详细信息
来源: 评论