咨询与建议

限定检索结果

文献类型

  • 19 篇 期刊文献
  • 14 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 34 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 32 篇 工学
    • 18 篇 计算机科学与技术...
    • 13 篇 电气工程
    • 5 篇 信息与通信工程
    • 5 篇 控制科学与工程
    • 2 篇 仪器科学与技术
    • 2 篇 建筑学
    • 2 篇 土木工程
    • 2 篇 测绘科学与技术
    • 2 篇 环境科学与工程(可...
    • 2 篇 软件工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 机械工程
    • 1 篇 石油与天然气工程
    • 1 篇 交通运输工程
    • 1 篇 安全科学与工程
  • 9 篇 理学
    • 4 篇 物理学
    • 4 篇 生物学
    • 1 篇 化学
    • 1 篇 系统科学
    • 1 篇 生态学
  • 3 篇 管理学
    • 3 篇 管理科学与工程(可...
    • 1 篇 图书情报与档案管...
  • 2 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学

主题

  • 34 篇 object detection...
  • 11 篇 deep learning
  • 4 篇 yolo
  • 4 篇 image processing
  • 3 篇 yolov3
  • 3 篇 rice disease
  • 3 篇 machine learning
  • 3 篇 computer vision
  • 2 篇 super-resolution...
  • 2 篇 construction sit...
  • 2 篇 yolov8
  • 2 篇 convolutional ne...
  • 1 篇 spiking neural n...
  • 1 篇 investment
  • 1 篇 image enhancemen...
  • 1 篇 3d lidar
  • 1 篇 super-resolution
  • 1 篇 label-free
  • 1 篇 sensor applicati...
  • 1 篇 deep learning mo...

机构

  • 2 篇 yonsei univ dept...
  • 2 篇 incheon natl uni...
  • 1 篇 university of sc...
  • 1 篇 kasetsart univ f...
  • 1 篇 kasetsart univ d...
  • 1 篇 univ pay & pays ...
  • 1 篇 univ tokyo grad ...
  • 1 篇 univ tokyo grad ...
  • 1 篇 fujian normal un...
  • 1 篇 northeastern uni...
  • 1 篇 wuhan univ sch c...
  • 1 篇 aalborg univ dep...
  • 1 篇 queens univ king...
  • 1 篇 zhejiang univers...
  • 1 篇 nanjing univ pos...
  • 1 篇 kasetsart univ f...
  • 1 篇 kyonggi univ col...
  • 1 篇 ajou univ dept b...
  • 1 篇 durban univ tech...
  • 1 篇 streamsage comca...

作者

  • 3 篇 kiratiratanapruk...
  • 3 篇 patarapuwadol su...
  • 3 篇 sinthupinyo wasi...
  • 3 篇 temniranrat pitc...
  • 2 篇 shao xinlei
  • 2 篇 hong taehoon
  • 2 篇 koo choongwan
  • 2 篇 chen yijia
  • 2 篇 zhao fan
  • 2 篇 wang jiaqi
  • 2 篇 kitvimonrat apic...
  • 2 篇 xi dianhan
  • 2 篇 mizuno katsunori
  • 2 篇 liu yongying
  • 1 篇 obermaisser roma...
  • 1 篇 fu liangzun
  • 1 篇 zhenrong zhang
  • 1 篇 torp kristian
  • 1 篇 chen jundong
  • 1 篇 yu yonghong

语言

  • 34 篇 英文
检索条件"主题词=Object detection and classification"
34 条 记 录,以下是1-10 订阅
排序:
FPGA-Based Real-Time object detection and classification System Using YOLO for Edge Computing
收藏 引用
IEEE ACCESS 2024年 12卷 73268-73278页
作者: Al Amin, Rashed Hasan, Mehrab Wiese, Veit Obermaisser, Roman Univ Siegen Inst Embedded Syst D-57076 Siegen Germany
The leap forward in research progress in real-time object detection and classification has been dramatically boosted by including Embedded Artificial Intelligence (EAI) and Deep Learning (DL). Real-time object detecti... 详细信息
来源: 评论
Robotic Guide Dog for Real-time Indoor object detection and classification with Localization
Robotic Guide Dog for Real-time Indoor Object Detection and ...
收藏 引用
25th IEEE Applied Sensing Conference (IEEE APSCON)
作者: Rees, Nathan Thiyagarajan, Karthick Kodagoda, Sarath Univ Technol Sydney UTS Robot Inst Sydney NSW Australia
Guide dog robots with advanced sensing abilities could be a big boon to vision-impaired people as some of them may choose technological solutions over real-life guide dogs. In this study, we propose a method that comb... 详细信息
来源: 评论
Nature-Inspired Search Method and Custom Waste object detection and classification Model for Smart Waste Bin
收藏 引用
SENSORS 2022年 第16期22卷 6176页
作者: Agbehadji, Israel Edem Abayomi, Abdultaofeek Bui, Khac-Hoai Nam Millham, Richard C. Freeman, Emmanuel Durban Univ Technol Fac Accounting & Informat POB 1334 ZA-4000 Durban South Africa Mangosuthu Univ Technol Dept Informat & Commun Technol POB 12363 ZA-4026 Durban South Africa Korea Inst Sci & Technol Informat KISTI Supercomp Applicat Ctr Daejeon 34141 South Korea Durban Univ Technol Dept Informat Technol ICT & Soc Res Grp POB 1334 ZA-4000 Durban South Africa Ghana Commun Technol Univ Dept Comp Sci PMB 100 Accra Ghana
Waste management is one of the challenges facing countries globally, leading to the need for innovative ways to design and operationalize smart waste bins for effective waste collection and management. The inability o... 详细信息
来源: 评论
Comparing deep learning models for low-light natural scene image enhancement and their impact on object detection and classification: Overview, empirical evaluation, and challenges
收藏 引用
SIGNAL PROCESSING-IMAGE COMMUNICATION 2022年 第0期109卷
作者: Al Sobbahi, Rayan Tekli, Joe Lebanese Amer Univ LAU Dept Elect & Comp Engn 36 Byblos Mt Lebanon Lebanon Univ Pay & Pays Adour UPPA LIUPPA Lab SPIDER Res Team F-64600 Anglet Aquitaine France
Low-light image (LLI) enhancement is an important image processing task that aims at improving the illumination of images taken under low-light conditions. Recently, a remarkable progress has been made in utilizing de... 详细信息
来源: 评论
A Miniaturized and Intelligent Lensless Holographic Imaging System With Auto-Focusing and Deep Learning-Based object detection for Label-Free Cell classification
IEEE PHOTONICS JOURNAL
收藏 引用
IEEE PHOTONICS JOURNAL 2024年 第3期16卷 1页
作者: Chen, Jin Han, Wentao Fu, Liangzun Lv, Zhihang Chen, Haotian Fang, Wenjing Hou, Jiale Yu, Haohan Huang, Xiwei Sun, Lingling Hangzhou Dianzi Univ Key Lab RF Circuits & Syst Minist Educ Hangzhou 310018 Peoples R China
Cell detection and classification is a key technique for disease diagnosis, but conventional methods such as optical microscopy and flow cytometry have limitations in terms of field-of-view (FOV), throughput, cost, si... 详细信息
来源: 评论
Seafloor debris detection using underwater images and deep learning-driven image restoration: A case study from Koh Tao, Thailand
收藏 引用
MARINE POLLUTION BULLETIN 2025年 214卷 117710页
作者: Zhao, Fan Huang, Baoxi Wang, Jiaqi Shao, Xinlei Wu, Qingyang Xi, Dianhan Liu, Yongying Chen, Yijia Zhang, Guochen Ren, Zhiyan Chen, Jundong Mizuno, Katsunori Univ Tokyo Grad Sch Frontier Sci Kashiwa Chiba 2778563 Japan Univ Calif Los Angeles Dept Environm Hlth Sci Los Angeles CA 90095 USA Shiga Univ Data Sci & AI Innovat Res Promot Ctr Hikone Shiga 5228522 Japan
Traditional detection and monitoring of seafloor debris present considerable challenges due to the high costs associated with underwater imaging devices and the complex environmental conditions in marine ecosystems. I... 详细信息
来源: 评论
Automatic detection of rice disease in images of various leaf sizes
收藏 引用
IET IMAGE PROCESSING 2025年 第1期19卷
作者: Kiratiratanapruk, Kantip Temniranrat, Pitchayagan Sinthupinyo, Wasin Marukatat, Sanparith Patarapuwadol, Sujin Natl Sci & Technol Dev Agcy NSTDA Natl Elect & Comp Technol Ctr NECTEC Image Proc & Understanding Res Team Pathum Thani Thailand Kasetsart Univ Fac Agr Kamphaeng Saen Dept Plant Pathol Nakhon Pathom Thailand
To help farmers manage limited resources, rice disease diagnosis must be accurate, timely, and affordable. This study addresses challenges in rice field images, such as environmental variability and differences in ric... 详细信息
来源: 评论
Detecting and classifying rooftops with a CNN-based remote-sensing method for urban area cool roof application
收藏 引用
ENERGY REPORTS 2024年 11卷 2516-2525页
作者: Park, Jaehyeong Park, Sangun Kang, Juyoung Ajou Univ Dept Business Analyt Business Sch 206 World Cup Ro Suwon South Korea Kyonggi Univ Coll Software Management Dept Ind & Management Engn 154-42 Gwanggyosan Ro Suwon 15442 South Korea Ajou Univ Dept E Business Business Sch 206 Worldcup Ro Suwon 16499 South Korea
Cool roofs reduce the greenhouse effect and increases the energy efficiency of buildings in urban areas, so they have been continuously researched and developed. Prior cool roof studies measured their efficiency when ... 详细信息
来源: 评论
Riverbed litter monitoring using consumer-grade aerial-aquatic speedy scanner (AASS) and deep learning based super-resolution reconstruction and detection network
收藏 引用
MARINE POLLUTION BULLETIN 2024年 第Pt A期209卷 117030页
作者: Zhao, Fan Liu, Yongying Wang, Jiaqi Chen, Yijia Xi, Dianhan Shao, Xinlei Tabeta, Shigeru Mizuno, Katsunori Univ Tokyo Grad Sch Frontier Sci Dept Environm Syst Tokyo Japan Univ Tokyo Grad Sch Frontier Sci Dept Socio Cultural Environm Studies Tokyo Japan
Underwater litter is widely spread across aquatic environments such as lakes, rivers, and oceans, significantly impacting natural ecosystems. Current automated monitoring technologies for detecting this litter face li... 详细信息
来源: 评论
Neural Network Technologies for detection and classification of objects
收藏 引用
OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING 2023年 第3期59卷 329-345页
作者: Borzov, S. M. Nezhevenko, E. S. Russian Acad Sci Inst Automat & Electrometry Siberian Branch Novosibirsk 630090 Russia
We present a review of the basic ideas used in solving the problems of detecting and classifying objects by their images using neural network technologies. The key publications on the most popular ways to improve clas... 详细信息
来源: 评论