咨询与建议

限定检索结果

文献类型

  • 2,011 篇 会议
  • 574 篇 期刊文献
  • 4 篇 学位论文

馆藏范围

  • 2,589 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,269 篇 工学
    • 702 篇 计算机科学与技术...
    • 631 篇 电气工程
    • 173 篇 机械工程
    • 165 篇 控制科学与工程
    • 154 篇 信息与通信工程
    • 106 篇 软件工程
    • 96 篇 仪器科学与技术
    • 44 篇 电子科学与技术(可...
    • 38 篇 测绘科学与技术
    • 30 篇 生物医学工程(可授...
    • 23 篇 交通运输工程
    • 13 篇 土木工程
    • 10 篇 材料科学与工程(可...
    • 8 篇 生物工程
    • 7 篇 光学工程
  • 213 篇 医学
    • 192 篇 临床医学
    • 21 篇 基础医学(可授医学...
    • 17 篇 特种医学
  • 160 篇 理学
    • 74 篇 物理学
    • 26 篇 系统科学
    • 25 篇 地球物理学
    • 13 篇 生物学
    • 12 篇 数学
    • 10 篇 化学
    • 8 篇 地理学
  • 53 篇 管理学
    • 49 篇 管理科学与工程(可...
  • 11 篇 农学
    • 9 篇 作物学
  • 11 篇 艺术学
    • 9 篇 设计学(可授艺术学...
  • 8 篇 文学
    • 7 篇 新闻传播学
  • 7 篇 教育学
    • 6 篇 心理学(可授教育学...
  • 5 篇 军事学
  • 1 篇 法学

主题

  • 2,589 篇 object segmentat...
  • 1,095 篇 image segmentati...
  • 310 篇 feature extracti...
  • 304 篇 object detection
  • 273 篇 computer vision
  • 226 篇 training
  • 208 篇 shape
  • 189 篇 cameras
  • 188 篇 image color anal...
  • 171 篇 video sequences
  • 167 篇 semantics
  • 161 篇 motion segmentat...
  • 158 篇 image edge detec...
  • 152 篇 visualization
  • 143 篇 task analysis
  • 142 篇 robustness
  • 140 篇 pixel
  • 134 篇 layout
  • 132 篇 computational mo...
  • 119 篇 three-dimensiona...

机构

  • 9 篇 adobe research
  • 8 篇 univ chinese aca...
  • 8 篇 microsoft resear...
  • 8 篇 school of commun...
  • 8 篇 nanjing univ sci...
  • 6 篇 university of ox...
  • 6 篇 tsinghua univers...
  • 6 篇 univ elect sci &...
  • 6 篇 university of ch...
  • 6 篇 shanghai univ sc...
  • 6 篇 tsinghua univ pe...
  • 5 篇 pla army acad ar...
  • 5 篇 natl univ singap...
  • 5 篇 school of electr...
  • 5 篇 yonsei univ
  • 5 篇 nanyang technol ...
  • 5 篇 department of el...
  • 5 篇 yonsei universit...
  • 5 篇 department of el...
  • 4 篇 media ic and sys...

作者

  • 9 篇 a.d. doulamis
  • 9 篇 n.d. doulamis
  • 8 篇 zhi liu
  • 8 篇 s.d. kollias
  • 8 篇 shao-yi chien
  • 7 篇 yang yi
  • 7 篇 thomas sikora
  • 7 篇 shi ran
  • 7 篇 ming-hsuan yang
  • 6 篇 asari vijayan k.
  • 6 篇 shih-fu chang
  • 6 篇 luc van gool
  • 6 篇 liu zhi
  • 6 篇 wang yang
  • 6 篇 ngan king ngi
  • 6 篇 wang wenguan
  • 6 篇 giro-i-nieto xav...
  • 6 篇 han junwei
  • 6 篇 jenq-neng hwang
  • 6 篇 andreas krutz

语言

  • 2,564 篇 英文
  • 17 篇 其他
  • 6 篇 中文
  • 2 篇 土耳其文
检索条件"主题词=Object segmentation"
2589 条 记 录,以下是41-50 订阅
排序:
object segmentation Based on Disparity Estimation  09
Object Segmentation Based on Disparity Estimation
收藏 引用
World Summit on Genetic and Evolutionary Computation (GEC 09)
作者: Zhang, Qian Liu, Suxing An, Ping Zhang, Zhaoyang Shanghai Univ Sch Commun & Informat Engn Minist Educ Shanghai Peoples R China
object segmentation plays an important role in multi-view video analysis. In this paper, we present a new object segmentation method for multi-view video in which only the disparity is used for segmentation and the mo... 详细信息
来源: 评论
Real-time object segmentation based on convolutional neural network with saliency optimization for picking
收藏 引用
Journal of Systems Engineering and Electronics 2018年 第6期29卷 1300-1307页
作者: CHEN Jinbo WANG Zhiheng LI Hengyu School of Mechatronic Engineering and Automation Shanghai University
This paper concerns the problem of object segmentation in real-time for picking system. A region proposal method inspired by human glance based on the convolutional neural network is proposed to select promising regio... 详细信息
来源: 评论
Higher-order potentials for video object segmentation in bilateral space
收藏 引用
NEUROCOMPUTING 2020年 401卷 28-35页
作者: Hao, Chuanyan Chen, Yadang Yang, Zhi-Xin Wu, Enhua Nanjing Univ Posts & Telecommun Sch Educ Sci & Technol Nanjing 210023 Peoples R China Univ Macau State Key Lab Internet Things Smart City Macau 999078 Peoples R China Univ Macau Dept Electromech Engn Macau 999078 Peoples R China Univ Macau Fac Sci & Technol Taipa 999078 Macau Peoples R China
We propose an effective approach to make segmentation for objects in videos with an initial input of the object masks in a few frames of the source video. In this method, we cast the segmentation task as a Markov Rand... 详细信息
来源: 评论
Joint key-frame extraction and object segmentation for content-based video analysis
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2006年 第7期16卷 904-914页
作者: Song, Xiaomu Fan, Guoliang Northwestern Univ Evanston IL 60208 USA Oklahoma State Univ Sch Elect & Comp Engn Stillwater OK 74078 USA
Key-frame extraction and object segmentation are usually implemented independently and separately due to the fact that they are on different semantic levels and involve different features. In this work, we propose a j... 详细信息
来源: 评论
Evaluation and modeling of depth feature incorporated visual attention for salient object segmentation
收藏 引用
NEUROCOMPUTING 2013年 120卷 24-33页
作者: Lei, Jianjun Zhang, Hailong You, Lei Hou, Chunping Wang, Laihua Tianjin Univ Sch Elect Informat Engn Tianjin Peoples R China
Visual attention has been used widely, such as region of interest (ROI) based image compression, imitating fixation region and salient object segmentation. The output saliency map range from spotlight map to object-ba... 详细信息
来源: 评论
Uncertainty-Guided segmentation Network for Geospatial object segmentation
收藏 引用
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 2024年 17卷 5824-5833页
作者: Jia, Hongyu Yang, Wenwu Wang, Lin Li, Haolin Dalian Maritime Univ Sch Maritime Econ & Management Dalian 116026 Peoples R China
Geospatial objects pose significant challenges, including dense distribution, substantial interclass variations, and minimal intraclass variations. These complexities make achieving precise foreground object segmentat... 详细信息
来源: 评论
Adaptive Selection of Reference Frames for Video object segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2022年 31卷 1057-1071页
作者: Hong, Lingyi Zhang, Wei Chen, Liangyu Zhang, Wenqiang Fan, Jianping Fudan Univ Sch Comp Sci Shanghai Key Lab Intelligent Informat Proc Shanghai Peoples R China Lenovo Res AI Lab Beijing 100085 Peoples R China
Video object segmentation is a challenging task in computer vision because the appearances of target objects might change drastically along the time in the video. To solve this problem, space-time memory (STM) network... 详细信息
来源: 评论
Beyond Appearance: Multi-Frame Spatio-Temporal Context Memory Networks for Efficient and Robust Video object segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2024年 33卷 4853-4866页
作者: Dang, Jisheng Zheng, Huicheng Xu, Xiaohao Wang, Longguang Guo, Yulan Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou 510006 Peoples R China Guangdong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Univ Michigan Robot Inst Ann Arbor MI 48109 USA Air Force Aviat Univ Sch Elect Sci & Technol Changchun 130022 Peoples R China Sun Yat Sen Univ Sch Elect & Commun Engn Shenzhen Campus Shenzhen 510006 Peoples R China
Current video object segmentation approaches primarily rely on frame-wise appearance information to perform matching. Despite significant progress, reliable matching becomes challenging due to rapid changes of the obj... 详细信息
来源: 评论
Motion-Appearance Interactive Encoding for object segmentation in Unconstrained Videos
收藏 引用
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 2020年 第6期30卷 1613-1624页
作者: Chen, Zixuan Guo, Chunchao Lai, Jianhuang Xie, Xiaohua Sun Yat Sen Univ Sch Data & Comp Sci Guangzhou 510006 Peoples R China GuangDong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China
We present a two-stage framework of integrating motion and appearance cues for foreground object segmentation in unconstrained videos. Unlike conventional methods which encode motion and appearance patterns individual... 详细信息
来源: 评论
Contour-Aware Loss: Boundary-Aware Learning for Salient object segmentation
收藏 引用
IEEE TRANSACTIONS ON IMAGE PROCESSING 2021年 30卷 431-443页
作者: Chen, Zixuan Zhou, Huajun Lai, Jianhuang Yang, Lingxiao Xie, Xiaohua Sun Yat Sen Univ Sch Comp Sci & Engn Guangzhou 510006 Peoples R China Sun Yat Sen Univ Guangdong Prov Key Lab Informat Secur Technol Guangzhou 510006 Peoples R China Sun Yat Sen Univ Minist Educ Key Lab Machine Intelligence & Adv Comp Guangzhou 510006 Peoples R China
We present a learning model that makes full use of boundary information for salient object segmentation. Specifically, we come up with a novel loss function, i.e., Contour Loss, which leverages object contours to guid... 详细信息
来源: 评论