The seasonal monsoon drives a dynamic response in the southern tropical Indian Ocean, previously observed in baroclinic Rossby wave signatures in annual sea level and thermocline depth anomalies. In this paper, monthl...
详细信息
The seasonal monsoon drives a dynamic response in the southern tropical Indian Ocean, previously observed in baroclinic Rossby wave signatures in annual sea level and thermocline depth anomalies. In this paper, monthly mass grids based on Release-05 Gravity Recovery and Climate Experiment (GRACE) data are used to study the annual cycle in southern tropical Indian Ocean bottom pressure. To interpret the satellite data, a linear model of the ocean's response to wind forcing-based on the theory of vertical normal modes and comprising baroclinic and barotropic components-is considered. The model is evaluated using stratification from an ocean atlas and winds from an atmospheric reanalysis. Good correspondence between model and data is found over the southern tropical Indian Ocean: the model explains 81% of the annual variance in the data on average between 10 degrees and 25 degrees S. Model solutions suggest that, while the annual baroclinic Rossby wave has a seafloor signature, the annual cycle in the deep sea generally involves important barotropic dynamics, in contrast to the response in the upper ocean, which is largely baroclinic.
The Arctic continental shelf seas hold a globally significant source of freshwater that impacts Arctic Ocean stratification, circulation, and climate. This freshwater can be injected below the surface mixed layer by i...
详细信息
The Arctic continental shelf seas hold a globally significant source of freshwater that impacts Arctic Ocean stratification, circulation, and climate. This freshwater can be injected below the surface mixed layer by intense turbulent kinetic energy dissipation events, as resolved by Laptev Sea microstructure observations. The tides provide a major source of energy that can be dissipated and hence drive diapycnal mixing in the Laptev Sea. Multiyear ADCP mooring records from locations across the shelf reveal that semidiurnal tides are dominated by the M-2 and S-2 constituents, with the largest amplitudes on the outer shelf. Throughout most of the shelf, tides are clockwise polarized and sheared by stratification, as characteristic near the M-2 critical latitude. Interannual variations of the tidal and shear structures on the inner shelf are mainly determined by the stratification-setting Lena River freshwater plume. In all locations, M-2 tides are enhanced under sea ice, and therefore changes in the seasonal ice cover may lead to changes in tides and water column structure. The main conclusions of this study are that (i) tides play a comparatively greater role year-round on the outer shelf relative to the inner shelf;(ii) a sea ice reduction will overall decrease the predictability of the currents, especially on the inner shelf;and (iii) the freshwater distribution directly impacts diapycnal mixing by setting the vertical tidal structure. These combined effects imply that future sea ice loss will increase the variability and vertical mixing of freshwater, particularly on the inner shelf, where the Lena River first enters the Laptev Sea.
Located at the center of the western North Pacific Subtropical Gyre, the Subtropical Countercurrent (STCC) is not only abundant in mesoscale eddies, but also exhibits prominent submesoscale eddy features. Output from ...
详细信息
Located at the center of the western North Pacific Subtropical Gyre, the Subtropical Countercurrent (STCC) is not only abundant in mesoscale eddies, but also exhibits prominent submesoscale eddy features. Output from a 1/30 degrees high-resolution OGCM simulation and a gridded satellite altimetry product are analyzed to contrast the seasonal STCC variability in the mesoscale versus submesoscale ranges. Resolving the eddy scales of >150 km, the altimetry product reveals that the STCC eddy kinetic energy and rms vorticity have a seasonal maximum in May and April, respectively, a weak positive vorticity skewness without seasonal dependence, and an inverse (forward) kinetic energy cascade for wavelengths larger (shorter) than 250 km. In contrast, the submesoscale-resolving OGCM simulation detects that the STCC eddy kinetic energy and rms vorticity both appear in March, a large positive vorticity skewness with strong seasonality, and an intense inverse kinetic energy cascade whose short-wave cutoff migrates seasonally between the 35- and 100-km wavelengths. Using a 2.5-layer, reduced-gravity model with an embedded surface density gradient, the authors show that these differences are due to the seasonal evolution of two concurring baroclinic instabilities. Extracting its energy from the surface density gradient, the frontal instability has a growth time scale of O(7) days, a dominant wavelength of O(50) km, and is responsible for the surface-intensified submesoscale eddy signals. The interior baroclinic instability, on the other hand, extracts energy from the vertically sheared STCC system. It has a slow growth time scale of O(40) days, a dominant wavelength of O(250) km, and, together with the kinetic energy cascaded upscale from the submesoscales, determines the mesoscale eddy modulations.
Sea surface temperature (SST) has been measured from near the end of the Scripps Institution of Oceanography (SIO) pier daily since 1916. It is one of the world's longest instrumental time series of SST. It is wid...
详细信息
Sea surface temperature (SST) has been measured from near the end of the Scripps Institution of Oceanography (SIO) pier daily since 1916. It is one of the world's longest instrumental time series of SST. It is widely used in studies of climate and marine ecosystems and in fisheries management. The authors hypothesized that a discontinuity exists in 1988, when the old pier was replaced with the present pier. A regression of annual-mean SST at SIO (SSTSIO) on the Pacific decadal oscillation index for 1916-87 was used to predict annual-mean SST (SSTSIO,PDO) for 1916-present. The residual (ResSST(SIO) = SSTSIO - SSTSIO,PDO) time series shows a positive discontinuity in 1988, when the present SIO pier was first used to measure SSTSIO. No discontinuity in 1988 was observed for ResSST at 12 other shore stations or in nearby waters. Use of the first principal component of other shore station time series of annual-mean SST as the predictor yields similar results. SSTSIO measured over 3 days shows a diel cycle and short-term variability consistent with rip current transport of warm surf-zone water to the end of the SIO pier. This study hypothesizes that rip current transport increased with the change from the old to the present pier and contributed to the observed discontinuity in SIO pier SST. The authors estimate an artifact of about +0.45 degrees C due to both rapid (1988 pier change) and gradual processes. Adjusting the SIO pier SST time series for this artifact reduces the long-term trend from +1.1 degrees to +0.6 degrees C century(-1), consistent with the global rate of change of SST over the past century.
Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the we...
详细信息
Data from three midlatitude, month-long surveys are examined for evidence of enhanced vertical mixing associated with the transition layer (TL), here defined as the strongly stratified layer that exists between the well mixed layer and the thermocline below. In each survey, microstructure estimates of turbulent dissipation were collected concurrently with fine-structure stratification and shear. Survey-wide averages are formed in a TL coordinate z(TL), which is referenced around the depth of maximum stratification for each profile. Averaged profiles show characteristic TL structures such as peaks in stratification N-2 and shear variance S-2, which fall off steeply above z(TL) = 0 and more gradually below. Turbulent dissipation rates are 5-10 times larger than those found in the upper thermocline (TC). The gradient Richardson number Ri = N-2/S-2 becomes unstable (Ri < 0.25) within similar to 10 m of the TL upper boundary, suggesting that shear instability is active in the TL for z(TL) > 0. Ri is stable for z(TL) 0. Turbulent dissipation is found to scale exponentially with depth for z(TL) 0, but the decay scales are different for the TL and upper TC: scales well with either N-2 or S-2. Owing to the strong correlation between S-2 and N-2, existing TC scalings of the form similar to |S|(p)|N|(q) overpredict variations in . The scale dependence of shear variance is not found to significantly affect the scalings of versus N-2 and S-2 for z(TL) 0. However, the onset of unstable Ri at the top of the TL is sensitively dependent to the resolution of the shears.
暂无评论