A comprehensive understanding of the spatial, seasonal, and diurnal patterns in cloud cover frequency over the Hawaiian Islands was developed using high-resolution image data from the National Aeronautics and Space Ad...
详细信息
A comprehensive understanding of the spatial, seasonal, and diurnal patterns in cloud cover frequency over the Hawaiian Islands was developed using high-resolution image data from the National Aeronautics and Space Administration's Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. The Terra and Aqua MODIS cloud mask products, which provide the confidence that a given 1-km pixel is unobstructed by cloud, were obtained for the entire MODIS time series (10-plus years) over the main Hawaiian Islands. Monthly statistics were generated from the daily cloud mask data, including mean cloud cover frequency at the four daily overpass times. The derived mean cloud cover frequency showed patterns that were generally consistent with the known distribution of mean rainfall and with the results from previous studies. Cloud cover frequency was the highest over land areas with elevations between the lifting condensation level (similar to 600 m) and the mean height of the trade wind inversion (TWI) base (similar to 2200 m), especially for the windward (northeastern) mountain slopes. Above the TWI, cloud frequency decreased sharply with elevation. Irrespective of season, cloud cover frequency was generally higher in the afternoon than in the morning and higher in daytime than at nighttime although these trends varied spatially. The dry season months (May-October) were less cloudy than the wet season months (November-April) at nighttime. The analysis also revealed a local December-January minimum in the annual cycle of cloud cover frequency. The monthly time series produced in this study is the first high-spatial-resolution cloud cover dataset in Hawaii.
Tropical cyclone (TC) intensity prediction, especially in the warning time frame of 24-48 h and for the prediction of rapid intensification (RI), remains a major operational challenge. Sea surface temperature (SST) ba...
详细信息
Tropical cyclone (TC) intensity prediction, especially in the warning time frame of 24-48 h and for the prediction of rapid intensification (RI), remains a major operational challenge. Sea surface temperature (SST) based empirical or theoretical maximum potential intensity (MPI) is the most important predictor in statistical intensity prediction schemes and rules derived by data mining techniques. Since the underlying SSTs during TCs usually cannot be observed well by satellites because of rain contamination and cannot be produced on a timely basis for operational statistical prediction, an ocean coupling potential intensity index (OC_PI), which is calculated based on pre-TC averaged ocean temperatures from the surface down to 100 m, is demonstrated to be important in building the decision tree for the classification of 24-h TC intensity change Delta V-24, that is, RI (Delta V-24 >= 25 kt, where 1 kt = 0.51 m s(-1)) and non-RI (Delta V-24 < 25 kt). Cross validations using 2000-10 data and independent verification using 2011 data are performed. The decision tree with the OC_PI shows a cross-validation accuracy of 83.5% and an independent verification accuracy of 89.6%, which outperforms the decision tree excluding the OC_PI with corresponding accuracies of 83.2% and 83.9%. Specifically for RI classification in independent verification, the former decision tree shows a much higher probability of detection and a lower false alarm ratio than the latter example. This study is of great significance for operational TC RI prediction as pre-TC OC_PI can skillfully reduce the overestimation of storm potential intensity by traditional SST-based MPI, especially for the non-RI TCs.
In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in...
详细信息
In this study, a new set of reflectivity equations are introduced into the Advanced Regional Prediction System (ARPS) cloud analysis system. This set of equations incorporates double-moment microphysics information in the analysis by adopting a set of diagnostic relationships between the intercept parameters and the corresponding mass mixing ratios. A reflectivity- and temperature-based graupel classification scheme is also implemented according to a hydrometeor identification (HID) diagram. A squall line that occurred on 23 April 2007 over southern China containing a pronounced trailing stratiform precipitation region is used as a test case to evaluate the impacts of the enhanced cloud analysis *** results show that using the enhanced cloud analysis scheme is able to better capture the characteristics of the squall line in the forecast. The predicted squall line exhibits a wider stratiform region and a more clearly defined transition zone between the leading convection and the trailing stratiform precipitation region agreeing better with observations in general, when using the enhanced cloud analysis together with the two-moment microphysics scheme. The quantitative precipitation forecast skill score is also improved.
Time series observations of velocity, salinity, pressure, and ice draft provide estimates of advective fluxes in Nares Strait from 2003 to 2009 at daily to interannual time scales. Velocity and salinity are integrated...
详细信息
Time series observations of velocity, salinity, pressure, and ice draft provide estimates of advective fluxes in Nares Strait from 2003 to 2009 at daily to interannual time scales. Velocity and salinity are integrated across the 36-km-wide and 350-m-deep channel for two distinct multiyear periods of sea ice cover. These observations indicate multiyear mean fluxes that range from 0.71 +/- 0.09 to 1.03 +/- 0.11 Sverdrups (Sv;1 Sv 10(6) m(3) s(-1) = 31 536 km(3) yr(-1)) for volume and from 32 +/- 5.7 to 54 +/- 9.3 mSv (1 mSv 10(3) m(3) s(-1)) for oceanic freshwater relative to a salinity of 34.8 for the first (2003-06) and second (2007-09) periods, respectively. Advection of ice adds another 8 +/- 2 mSv or 260 +/- 70 km(3) yr(-1) to the freshwater export. Flux values are larger when the sea ice is mobile all year. About 75% of the oceanic volume and freshwater flux variability is correlated at daily to interannual time scales. Flux variability peaks at a 20-day time scale and correlates strongly with along-channel pressure gradients (r(2) = 0.68). The along-channel pressure gradient peaks in early spring when the sea ice is often motionless with higher sea level in the Arctic that drives the generally southward ocean circulation. Local winds contribute only when the sea ice is mobile, when they explain 60% of its variance (r(2) = 0.60). Observed annual to interannual change in the duration of motionless sea ice conditions impacts ocean stratification and freshwater flux, while seasonal variations are small.
Current methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model fo...
详细信息
Current methods of assimilation of precipitation into numerical weather prediction models are able to make the model precipitation become similar to the observed precipitation during the assimilation, but the model forecasts tend to return to their original solution after a few hours. To facilitate the precipitation assimilation, a logarithm transformation has been used in several past studies. Lien et al. proposed instead to assimilate precipitation using the local ensemble transform Kalman filter (LETKF) with a Gaussian transformation technique and succeeded in improving the model forecasts in perfect-model observing system simulation experiments (OSSEs).In this study, the method of Lien et al. is tested within a more realistic configuration: the TRMM Multisatellite Precipitation Analysis (TMPA) data are assimilated into a low-resolution version of the NCEP Global Forecast System (GFS). With guidance from a statistical study comparing the GFS model background precipitation and the TMPA data, some modifications of the assimilation methods proposed in Lien et al. are made, including 1) applying separate Gaussian transformations to model and to observational precipitation based on their own cumulative distribution functions;2) adopting a quality control criterion based on the correlation between the long-term model and observed precipitation data at the observation location;and 3) proposing a new method to define the transformation of zero precipitation that takes into account the zero precipitation probability in the background ensemble rather than the climatology. With these modifications, the assimilation of the TMPA precipitation data improves both the analysis and 5-day model forecasts when compared with a control experiment assimilating only rawinsonde data.
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphe...
详细信息
One year of continuous ground-based lidar observations (2012) is analyzed for single-layer cirrus clouds at the NASA Micro Pulse Lidar Network site at the Goddard Space Flight Center to investigate top-of-the-atmosphere (TOA) annual net daytime radiative forcing properties. A slight positive net daytime forcing is estimated (i.e., warming): 0.07-0.67 Wm(-2) in sample-relative terms, which reduces to 0.03-0.27 W m(-2) in absolute terms after normalising to unity based on a 40% midlatitude occurrence frequency rate estimated from satellite data. Results are based on bookend solutions for lidar extinction-to-backscatter (20 and 30 sr) and corresponding retrievals of the 532-nm cloud extinction coefficient. Uncertainties due to cloud undersampling, attenuation effects, sample selection, and lidar multiple scattering are described. A net daytime cooling effect is found from the very thinnest clouds (cloud optical depth <= 0.01), which is attributed to relatively high solar zenith angles. A relationship involving positive/negative daytime cloud forcing is demonstrated as a function of solar zenith angle and cloud-top temperature. These properties, combined with the influence of varying surface albedos, are used to conceptualise how daytime cloud forcing likely varies with latitude and season, with cirrus clouds exerting less positive forcing and potentially net TOA cooling approaching the summer poles (not ice and snow covered) versus greater warming at the equator. The existence of such a gradient would lead cirrus to induce varying daytime TOA forcing annually and seasonally, making it a far greater challenge than presently believed to constrain the daytime and diurnal cirrus contributions to global radiation budgets.
The creation of a 3D mosaic is often the first step when using the high-spatial- and temporal-resolution data produced by ground-based radars. Efficient yet accurate methods are needed to mosaic data from dozens of ra...
详细信息
The creation of a 3D mosaic is often the first step when using the high-spatial- and temporal-resolution data produced by ground-based radars. Efficient yet accurate methods are needed to mosaic data from dozens of radar to better understand the precipitation processes in synoptic-scale systems such as tropical cyclones. Research-grade radar mosaic methods of analyzing historical weather events should utilize data from both sides of a moving temporal window and process them in a flexible data architecture that is not available in most stand-alone software tools or real-time systems. Thus, these historical analyses require a different strategy for optimizing flexibility and scalability by removing time constraints from the design. This paper presents a MapReduce-based playback framework using Apache Spark's computational engine to interpolate large volumes of radar reflectivity and velocity data onto 3D grids. Designed as being friendly to use on a high-performance computing cluster, these methods may also be executed on a low-end configured machine. A protocol is designed to enable interoperability with GIS and spatial analysis functions in this framework. Open source software is utilized to enhance radar usability in the nonspecialist community. Case studies during a tropical cyclone landfall shows this framework's capability of efficiently creating a large-scale high-resolution 3D radar mosaic with the integration of GIS functions for spatial analysis.
The wettest period during the CalWater-2014 winter field campaign occurred with a long-lived, intense atmospheric river (AR) that impacted California on 7-10 February. The AR was maintained in conjunction with the dev...
详细信息
The wettest period during the CalWater-2014 winter field campaign occurred with a long-lived, intense atmospheric river (AR) that impacted California on 7-10 February. The AR was maintained in conjunction with the development and propagation of three successive mesoscale frontal waves. Based on Lagrangian trajectory analysis, moist air of tropical origin was tapped by the AR and was subsequently transported into California. Widespread heavy precipitation (200-400 mm) fell across the coastal mountain ranges northwest of San Francisco and across the northern Sierra Nevada, although only modest flooding ensued due to anomalously dry antecedent conditions. A NOAA G-IV aircraft flew through two of the frontal waves in the AR environment offshore during a ~24-h period. Parallel dropsonde curtains documented key three-dimensional thermodynamic and kinematic characteristics across the AR and the frontal waves prior to landfall. The AR characteristics varied, depending on the location of the cross section through the frontal waves. A newly implemented tail-mounted Doppler radar on the G-IV simultaneously captured coherent precipitation features. Along the coast, a 449-MHz wind profiler and collocated global positioning system (GPS) receiver documented prolonged AR conditions linked to the propagation of the three frontal waves and highlighted the orographic character of the coastal-mountain rainfall with the waves' landfall. A vertically pointing S-PROF radar in the coastal mountains provided detailed information on the bulk microphysical characteristics of the rainfall. Farther inland, a pair of 915-MHz wind profilers and GPS receivers quantified the orographic precipitation forcing as the AR ascended the Sierra Nevada, and as the terrain-induced Sierra barrier jet ascended the northern terminus of California's Central Valley.
The sun is known to be a good target for weather radar calibration. In this paper high-resolution raster scans of the sun at high elevations will be used to derive the antenna pattern of weather radar, without being a...
详细信息
The sun is known to be a good target for weather radar calibration. In this paper high-resolution raster scans of the sun at high elevations will be used to derive the antenna pattern of weather radar, without being affected by beam propagation effects and reflections close to the earth's surface. It is shown that this pattern matches well to pattern measurements using a point source. Hence, a good estimation of the real antenna pattern can be derived using the sun. Furthermore, formulas to extract undistorted antenna patterns from the sun, even at high-elevation angles, are derived. The signal processing required to achieve high sensitivity for the antenna pattern measurements will be described. Important parts of the antenna pattern-for example, sidelobes-become visible when using long integration times. The polarimetric receiver channel cross-correlation coefficient is proposed as a figure of merit of the cross-polar isolation of the antenna and hence the cross-polar pattern. The results are also compared to point source measurements. This illustrates how an unpolarized signal source like the sun can be used to derive polarimetric variables.
The National Centers for Environmental Prediction (NCEP) stage IV quantitative precipitation estimates (QPEs) are used in many studies for intercomparisons including those for satellite QPEs. An overview of the Nation...
详细信息
The National Centers for Environmental Prediction (NCEP) stage IV quantitative precipitation estimates (QPEs) are used in many studies for intercomparisons including those for satellite QPEs. An overview of the National Weather Service precipitation processing system is provided here so as to set the stage IV product in context and to provide users with some knowledge as to how it is developed. Then, an assessment of the stage IV product over the period 2002-12 is provided. The assessment shows that the stage IV product can be useful for conditional comparisons of moderate-to-heavy rainfall for select seasons and locations. When evaluating the product at the daily scale, there are many discontinuities due to the operational processing at the radar site as well as discontinuities due to the merging of data from different River Forecast Centers (RFCs) that use much different processing algorithms for generating their precipitation estimates. An assessment of the daily precipitation estimates is provided based on the cumulative distribution function for all of the daily estimates for each RFC by season. In addition it is found that the hourly estimates at certain RFCs suffer from lack of manual quality control and caution should be used.
暂无评论