This paper deals with the problem of observer-basedcontroller design for a class of nonlinear systems subject to unknown inputs. A novel method is presented to design a controller using estimated state variables whic...
详细信息
ISBN:
(纸本)9788993215090
This paper deals with the problem of observer-basedcontroller design for a class of nonlinear systems subject to unknown inputs. A novel method is presented to design a controller using estimated state variables which guarantees all the state variables of the closed-loop system converge to the vicinity of the origin and stay there forever. This is done via satisfying several sufficient conditions in terms of nonlinear matrix inequalities. In light of linear algebra, particularly matrix decompositions, the achieved conditions will be converted to a Linear Matrix Inequality (LMI) problem to facilitate the procedure of computing the observer and controller gains. Finally, the effectiveness of the proposed method is illustrated by implementing on a highly nonlinear chaotic system.
This paper deals with the problem of observer-basedcontroller design for a class of nonlinear systems subject to unknown inputs. A novel method is presented to design a controller using estimated state variables whic...
详细信息
ISBN:
(纸本)9781479999767
This paper deals with the problem of observer-basedcontroller design for a class of nonlinear systems subject to unknown inputs. A novel method is presented to design a controller using estimated state variables which guarantees all the state variables of the closed-loop system converge to the vicinity of the origin and stay there forever. This is done via satisfying several sufficient conditions in terms of nonlinear matrix inequalities. In light of linear algebra, particularly matrix decompositions, the achieved conditions will be converted to a Linear Matrix Inequality (LMI) problem to facilitate the procedure of computing the observer and controller gains. Finally, the effectiveness of the proposed method is illustrated by implementing on a highly nonlinear chaotic system.
In many mechanical devices with chaotic behavior, stabilizing unstable periodic orbits (UPOs) of the system has positive effects in the lifetime and effectiveness of these devices. In this study, a new non-parallel di...
详细信息
In many mechanical devices with chaotic behavior, stabilizing unstable periodic orbits (UPOs) of the system has positive effects in the lifetime and effectiveness of these devices. In this study, a new non-parallel distributed compensation (non-PDC) observer-based tracking controller is presented for Takagi-Sugeno fuzzy systems to control the chaotic behavior of such systems. Asymptotic stability synthesis of the closed-loop system is investigated using a fuzzy Lyapunov function to derive less conservative conditions than common quadratic Lyapunov function-based approaches. To tackle the main drawback of the fuzzy Lyapunov-based approaches, which assume some upper bounds on the derivatives of the fuzzy grade functions, we propose a new procedure by considering a constraint on the control signal. The new design conditions are given in the form of linear matrix inequalities (LMIs). The proposed control structure is applied to spinning disks in which chaos phenomena appear in lateral vibration. Simulation results are given to show the applicability of the proposed tracker to the UPO problem.
暂无评论