咨询与建议

限定检索结果

文献类型

  • 3 篇 期刊文献
  • 3 篇 会议

馆藏范围

  • 6 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 6 篇 工学
    • 5 篇 计算机科学与技术...
    • 2 篇 电气工程
    • 2 篇 控制科学与工程
    • 1 篇 软件工程
  • 2 篇 医学
    • 1 篇 临床医学
    • 1 篇 特种医学
  • 2 篇 管理学
    • 2 篇 管理科学与工程(可...

主题

  • 6 篇 online em algori...
  • 1 篇 clustering
  • 1 篇 foreground detec...
  • 1 篇 information geom...
  • 1 篇 riemannian mixtu...
  • 1 篇 unsupervised ano...
  • 1 篇 self-organizing ...
  • 1 篇 frugal computing
  • 1 篇 gaussian scale m...
  • 1 篇 unreliable annot...
  • 1 篇 background learn...
  • 1 篇 parkinson's dise...
  • 1 篇 data visualizati...
  • 1 篇 crowdsourcing
  • 1 篇 naive bayes
  • 1 篇 modularity
  • 1 篇 gaussian mixture...
  • 1 篇 adaptive control
  • 1 篇 unsupervised met...
  • 1 篇 malariaspot

机构

  • 1 篇 kyoto univ grad ...
  • 1 篇 michigan state u...
  • 1 篇 cardiff univ mfg...
  • 1 篇 univ grenoble al...
  • 1 篇 univ grenoble gi...
  • 1 篇 tongji univ dept...
  • 1 篇 univ politecn ca...
  • 1 篇 univ bordeaux la...
  • 1 篇 ksa coll comp & ...
  • 1 篇 univ grenoble al...
  • 1 篇 nara inst sci & ...
  • 1 篇 univ adolfo iban...
  • 1 篇 univ lyon cnrs i...

作者

  • 1 篇 hirayama jun-ich...
  • 1 篇 pages-zamora alb...
  • 1 篇 diaz-vilor carle...
  • 1 篇 li dawei
  • 1 篇 berthoumieu yann...
  • 1 篇 goodman erik
  • 1 篇 xu lihong
  • 1 篇 osaga satoshi
  • 1 篇 jutten christian
  • 1 篇 congedo marco
  • 1 篇 oudoumanessah ge...
  • 1 篇 duc truong pham
  • 1 篇 dojat michel
  • 1 篇 zanini paolo
  • 1 篇 said salem
  • 1 篇 ishii shin
  • 1 篇 cabrera-bean mar...
  • 1 篇 lartizien carole
  • 1 篇 takenouchi takas...
  • 1 篇 ruz gonzalo a.

语言

  • 6 篇 英文
检索条件"主题词=Online EM algorithm"
6 条 记 录,以下是1-10 订阅
排序:
Towards Frugal Unsupervised Detection of Subtle Abnormalities in Medical Imaging  1
收藏 引用
26th International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI)
作者: Oudoumanessah, Geoffroy Lartizien, Carole Dojat, Michel Forbes, Florence Univ Grenoble Alpes CNRS INRIA Grenoble INPLJK F-38000 Grenoble France Univ Grenoble Alpes Grenoble Inst Neurosci Inserm U1216 CHU Grenoble Alpes F-38000 Grenoble France Univ Lyon CNRS INSERM INSA LyonUCBLCREATISUMR5220U1294 F-69621 Villeurbanne France
Anomaly detection in medical imaging is a challenging task in contexts where abnormalities are not annotated. This problem can be addressed through unsupervised anomaly detection (UAD) methods, which identify features... 详细信息
来源: 评论
Unsupervised online clustering and detection algorithms using crowdsourced data for malaria diagnosis
收藏 引用
PATTERN RECOGNITION 2019年 86卷 209-223页
作者: Pages-Zamora, Alba Cabrera-Bean, Margarita Diaz-Vilor, Carles Univ Politecn Catalunya BarcelonaTech UPC SPCOM Grp C Jordi Girona 31 Barcelona 08034 Spain
Crowdsourced data in science might be severely error-prone due to the inexperience of annotators participating in the project. In this work, we present a procedure to detect specific structures in an image given tags ... 详细信息
来源: 评论
Riemannian online algorithms for Estimating Mixture Model Parameters  3rd
Riemannian Online Algorithms for Estimating Mixture Model Pa...
收藏 引用
3rd International SEE Conference on Geometric Science of Information (GSI)
作者: Zanini, Paolo Said, Salem Berthoumieu, Yannick Congedo, Marco Jutten, Christian Univ Bordeaux Lab IMS CNRS UMR 5218 Bordeaux France Univ Grenoble Gipsa Lab CNRS UMR 5216 Grenoble France
This paper introduces a novel algorithm for the online estimate of the Riemannian mixture model parameters. This new approach counts on Riemannian geometry concepts to extend the well-known Titterington approach for t... 详细信息
来源: 评论
NBSOM: The naive Bayes self-organizing map
收藏 引用
NEURAL COMPUTING & APPLICATIONS 2012年 第6期21卷 1319-1330页
作者: Ruz, Gonzalo A. Duc Truong Pham Univ Adolfo Ibanez Fac Ingn & Ciencias Santiago Chile Cardiff Univ Mfg Engn Ctr Cardiff CF24 3AA S Glam Wales KSA Coll Comp & Informat Sci Dept Informat Syst Riyadh Saudi Arabia
The naive Bayes model has proven to be a simple yet effective model, which is very popular for pattern recognition applications such as data classification and clustering. This paper explores the possibility of using ... 详细信息
来源: 评论
Real-time statistical background learning for foreground detection under unstable illuminations
Real-time statistical background learning for foreground det...
收藏 引用
11th IEEE International Conference on Machine Learning and Applications (ICMLA)
作者: Li, Dawei Xu, Lihong Goodman, Erik Tongji Univ Dept Control Sci & Engn Shanghai Peoples R China Michigan State Univ Dept Elect & Comp Engn E Lansing MI 48824 USA
This work proposes a fast background learning algorithm for foreground detection under changing illumination. Gaussian Mixture Model (GMM) is an effective statistical model in background learning. We first focus on Ti... 详细信息
来源: 评论
A probabilistic modeling of MOSAIC learning
收藏 引用
ARTIFICIAL LIFE AND ROBOTICS 2008年 第1-2期12卷 167-171页
作者: Osaga, Satoshi Hirayama, Jun-ichiro Takenouchi, Takashi Ishii, Shin Kyoto Univ Grad Sch Infomat Uji Kyoto 6110011 Japan Nara Inst Sci & Technolgy Grad Sch Informat Sci Ikoma Japan
Humans can generate accurate and appropriate motor commands in various, and even uncertain, environments. MOSAIC (MOdular Selection And Identifi cation for Control) was originally proposed to describe this human abili... 详细信息
来源: 评论