咨询与建议

限定检索结果

文献类型

  • 359 篇 期刊文献
  • 89 篇 会议
  • 1 篇 学位论文

馆藏范围

  • 449 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 420 篇 工学
    • 322 篇 计算机科学与技术...
    • 116 篇 电气工程
    • 58 篇 控制科学与工程
    • 42 篇 信息与通信工程
    • 38 篇 软件工程
    • 21 篇 机械工程
    • 16 篇 仪器科学与技术
    • 13 篇 石油与天然气工程
    • 11 篇 动力工程及工程热...
    • 10 篇 力学(可授工学、理...
    • 10 篇 土木工程
    • 8 篇 建筑学
    • 6 篇 材料科学与工程(可...
    • 6 篇 电子科学与技术(可...
    • 5 篇 生物医学工程(可授...
    • 4 篇 环境科学与工程(可...
    • 3 篇 测绘科学与技术
    • 3 篇 化学工程与技术
    • 3 篇 网络空间安全
  • 80 篇 管理学
    • 80 篇 管理科学与工程(可...
    • 2 篇 工商管理
  • 70 篇 理学
    • 38 篇 数学
    • 23 篇 生物学
    • 13 篇 化学
    • 7 篇 系统科学
    • 3 篇 物理学
  • 8 篇 农学
    • 2 篇 作物学
  • 7 篇 法学
    • 7 篇 法学
  • 7 篇 医学
    • 6 篇 临床医学
  • 3 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 艺术学
  • 1 篇 教育学

主题

  • 449 篇 opposition-based...
  • 49 篇 differential evo...
  • 37 篇 optimization
  • 24 篇 particle swarm o...
  • 23 篇 feature selectio...
  • 19 篇 global optimizat...
  • 18 篇 metaheuristics
  • 17 篇 evolutionary alg...
  • 15 篇 swarm intelligen...
  • 14 篇 levy flight
  • 13 篇 harmony search a...
  • 12 篇 multi-objective ...
  • 12 篇 evolutionary alg...
  • 12 篇 whale optimizati...
  • 11 篇 obl
  • 10 篇 metaheuristic
  • 9 篇 chaotic local se...
  • 9 篇 classification
  • 8 篇 meta-heuristic
  • 8 篇 pso

机构

  • 7 篇 wenzhou univ col...
  • 6 篇 batman univ dept...
  • 6 篇 xian univ techno...
  • 5 篇 minia univ fac c...
  • 5 篇 yarmouk univ dep...
  • 5 篇 batman univ dept...
  • 5 篇 amman arab univ ...
  • 5 篇 shandong univ sc...
  • 4 篇 xian univ techno...
  • 4 篇 nanchang inst te...
  • 4 篇 wuhan univ state...
  • 4 篇 duy tan univ ins...
  • 4 篇 zagazig univ fac...
  • 4 篇 nanchang inst te...
  • 4 篇 jadavpur univ de...
  • 4 篇 lanzhou jiaotong...
  • 4 篇 natl univ singap...
  • 3 篇 appl sci private...
  • 3 篇 jiangxi agr univ...
  • 3 篇 batman univ voca...

作者

  • 11 篇 ekinci serdar
  • 11 篇 chen huiling
  • 9 篇 rahnamayan shahr...
  • 9 篇 heidari ali asgh...
  • 9 篇 izci davut
  • 8 篇 xu qingzheng
  • 8 篇 abd elaziz moham...
  • 7 篇 hekimoglu baran
  • 7 篇 wang na
  • 7 篇 houssein essam h...
  • 6 篇 wang hui
  • 6 篇 tizhoosh hamid r...
  • 6 篇 mohapatra prabhu...
  • 6 篇 oliva diego
  • 6 篇 abualigah laith
  • 5 篇 si tapas
  • 5 篇 pan jeng-shyang
  • 5 篇 abed-alguni bila...
  • 5 篇 mousavirad seyed...
  • 5 篇 wang mingjing

语言

  • 438 篇 英文
  • 8 篇 其他
  • 3 篇 德文
  • 3 篇 中文
  • 2 篇 法文
  • 1 篇 土耳其文
检索条件"主题词=Opposition-based Learning"
449 条 记 录,以下是1-10 订阅
排序:
opposition-based learning Harris hawks optimization with steepest convergence for engineering design problems
收藏 引用
JOURNAL OF SUPERCOMPUTING 2025年 第1期81卷 1-52页
作者: Zhao, Yanfen Liu, Hao Univ Sci & Technol Liaoning Sch Sci Anshan 114051 Liaoning Peoples R China
Harris hawks optimization (HHO) is a swarm intelligent algorithm that mimics the collective hunting strategy of Harris hawks. Although it has specific advantages over other algorithms in local exploitation for feasibl... 详细信息
来源: 评论
Enhanced coati optimization algorithm using elite opposition-based learning and adaptive search mechanism for feature selection (May, 10.1007/s13042-024-02222-3, 2024)
收藏 引用
INTERNATIONAL JOURNAL OF MACHINE learning AND CYBERNETICS 2025年 第1期16卷 395-395页
作者: Qtaish, Amjad Braik, Malik Albashish, Dheeb Alshammari, Mohammad T. Alreshidi, Abdulrahman Alreshidi, Eissa Jaber Univ Hail Dept Informat & Comp Sci Hail Saudi Arabia Appl Sci Private Univ Accounting Dept Amman Jordan Al Balqa Appl Univ Comp Sci Dept Salt Jordan
The rapid rise in volume and feature dimensions is negatively impacting machine learning and many other areas, leading to worse classification accuracy and higher computational costs. Feature Selection (FS) methods ar... 详细信息
来源: 评论
Improved material generation algorithm by opposition-based learning and laplacian crossover for global optimization and advances in real-world engineering problems
收藏 引用
MATERIALS TESTING 2025年 第4期67卷 737-746页
作者: Mehta, Pranav Kumar, Sumit Sait, Sadiq M. Yildiz, Betuel S. Yildiz, Ali Riza Bursa Uludag Univ Dept Mech Engn Bursa Turkiye Dharmsinh Desai Univ Dept Mech Engn Nadiad Gujarat India Univ Tasmania Launceston TAS Australia King Fahd Univ Petr & Minerals Dhahran Saudi Arabia
The current study aims to utilize a unique hybrid optimizer called oppositional-based learning and laplacian crossover augmented material generation algorithm (MGA-OBL-LP) to solve engineering design problems. The opp... 详细信息
来源: 评论
A novel cheetah optimizer hybrid approach based on opposition-based learning (OBL) and diversity metrics
收藏 引用
COMPUTING 2025年 第2期107卷 1-58页
作者: Cuevas, Erik Barba, Oscar Escobar, Hector Univ Guadalajara Dept Electrophoton Engn CUCEI Ave Revolut 1500 Guadalajara 44430 Mexico Univ Guadalajara Dept Innovat Based Informat & Knowledge CUCEI Ave Revoluc 1500 Guadalajara 44430 Mexico
Hybridizing metaheuristic optimization algorithms offers a promising approach for enhancing the search performance and achieving optimal solutions. The main goal of hybridization is to combine algorithms in a manner t... 详细信息
来源: 评论
Dynamic step opposition-based learning sparrow search algorithm for UAV path planning
收藏 引用
CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS 2025年 第1期28卷 1-15页
作者: He, Yong Wang, Mingran Changsha Univ Sci & Technol Sch Elect & Informat Engn Changsha 410114 Hunan Peoples R China
In this paper, aiming at the problems of large randomness, low convergence accuracy, and easy falling into local optimum in the application of sparrow search algorithm to UAV three-dimensional path planning, a dynamic... 详细信息
来源: 评论
Boosting multi-objective aquila optimizer with opposition-based learning for large-scale time–cost trade-off problems
收藏 引用
Asian Journal of Civil Engineering 2025年 第5期26卷 2179-2188页
作者: Baltaci, Yusuf Civil Engineering Department Karadeniz Technical University Trabzon 61080 Turkey
This study presents an enhanced version of the Aquila optimizer (AO), known as the opposition-based aquila optimizer (OBAO), which incorporates opposition-based learning (OBL) to enhance performance. By considering bo... 详细信息
来源: 评论
opposition-based learning monarch butterfly optimization with Gaussian perturbation for large-scale 0-1 knapsack problem
收藏 引用
COMPUTERS & ELECTRICAL ENGINEERING 2018年 67卷 454-468页
作者: Feng, Yanhong Wang, Gai-Ge Dong, Junyu Wang, Ling Hebei GEO Univ Sch Informat Engn Shijiazhuang 050031 Hebei Peoples R China Ocean Univ China Dept Comp Sci & Technol Qingdao 266100 Peoples R China Northeast Normal Univ Inst Algorithm & Big Data Anal Changchun 130117 Jilin Peoples R China Northeast Normal Univ Sch Comp Sci & Informat Technol Changchun 130117 Jilin Peoples R China Jilin Univ Key Lab Symbol Computat & Knowledge Engn Minist Educ Changchun 130012 Jilin Peoples R China Tsinghua Univ Dept Automat Beijing 100084 Peoples R China
Monarch butterfly optimization (MBO) has become an effective optimization technique for function optimization and combinatorial optimization. In this paper, a generalized opposition-based learning (OBL) monarch butter... 详细信息
来源: 评论
opposition-based learning inspired particle swarm optimization (OPSO) scheme for task scheduling problem in cloud computing
收藏 引用
JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING 2021年 第10期12卷 9855-9875页
作者: Agarwal, Mohit Srivastava, Gur Mauj Saran Sharda Univ Sch Engn & Technol Dept Comp Sci & Engn Greater Noida 201306 Uttar Pradesh India Dayalbagh Educ Inst Dept Phys & Comp Sci Agra 282002 Uttar Pradesh India
The problem of scheduling of tasks in distributed, heterogeneous, and multiprocessing computing environment like grid and cloud computing is considered as one of the most important issue from research perspective. As ... 详细信息
来源: 评论
opposition-based learning in shuffled frog leaping: An application for parameter identification
收藏 引用
INFORMATION SCIENCES 2015年 第0期291卷 19-42页
作者: Ahandani, Morteza Alinia Alavi-Rad, Hosein Islamic Azad Univ Langaroud Branch Dept Elect Engn Langaroud Iran Islamic Azad Univ Langaroud Branch Young Researchers Club Langaroud Iran
This paper proposes using the opposition-based learning (OBL) strategy in the shuffled frog leaping (SFL). The SFL divides a population into several memeplexes and then improves each memeplex in an evolutionary proces... 详细信息
来源: 评论
opposition-based learning in the shuffled differential evolution algorithm
收藏 引用
SOFT COMPUTING 2012年 第8期16卷 1303-1337页
作者: Ahandani, Morteza Alinia Alavi-Rad, Hosein Islamic Azad Univ Langaroud Branch Dept Elect Engn Langaroud Iran
This paper proposes using the opposition-based learning (OBL) strategy in the shuffled differential evolution (SDE). In the SDE, population is divided into several memeplexes and each memeplex is improved by the diffe... 详细信息
来源: 评论