咨询与建议

限定检索结果

文献类型

  • 2,234 篇 期刊文献
  • 1,749 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 4,003 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,667 篇 工学
    • 2,083 篇 计算机科学与技术...
    • 1,443 篇 软件工程
    • 741 篇 电气工程
    • 611 篇 控制科学与工程
    • 332 篇 机械工程
    • 325 篇 信息与通信工程
    • 154 篇 动力工程及工程热...
    • 149 篇 石油与天然气工程
    • 129 篇 电子科学与技术(可...
    • 129 篇 土木工程
    • 91 篇 材料科学与工程(可...
    • 89 篇 仪器科学与技术
    • 75 篇 环境科学与工程(可...
    • 73 篇 交通运输工程
    • 69 篇 力学(可授工学、理...
    • 65 篇 建筑学
    • 61 篇 化学工程与技术
    • 57 篇 水利工程
    • 55 篇 航空宇航科学与技...
    • 48 篇 生物医学工程(可授...
  • 1,871 篇 理学
    • 1,440 篇 数学
    • 228 篇 系统科学
    • 196 篇 物理学
    • 192 篇 统计学(可授理学、...
    • 68 篇 化学
    • 60 篇 生物学
  • 391 篇 管理学
    • 340 篇 管理科学与工程(可...
    • 72 篇 工商管理
    • 48 篇 图书情报与档案管...
  • 96 篇 医学
  • 54 篇 经济学
    • 51 篇 应用经济学
  • 28 篇 农学
  • 21 篇 法学
  • 16 篇 教育学
  • 9 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 4,003 篇 optimization alg...
  • 270 篇 optimization
  • 190 篇 algorithms
  • 98 篇 machine learning
  • 88 篇 design
  • 66 篇 particle swarm o...
  • 55 篇 genetic algorith...
  • 54 篇 optimal control
  • 51 篇 convergence
  • 48 篇 objective functi...
  • 47 篇 genetic algorith...
  • 39 篇 simulation
  • 39 篇 artificial intel...
  • 38 篇 optimal design
  • 38 篇 converge
  • 34 篇 evolutionary alg...
  • 34 篇 heuristic algori...
  • 33 篇 predictive contr...
  • 33 篇 deep learning
  • 32 篇 optimisation

机构

  • 12 篇 duy tan univ ins...
  • 10 篇 national key lab...
  • 8 篇 amman arab univ ...
  • 7 篇 stanford univers...
  • 7 篇 univ technol syd...
  • 7 篇 semnan univ dept...
  • 6 篇 georgia inst tec...
  • 6 篇 department of co...
  • 6 篇 google research ...
  • 6 篇 school of artifi...
  • 5 篇 politecn milan d...
  • 5 篇 tu wien austria
  • 5 篇 ain shams univ f...
  • 5 篇 google deepmind ...
  • 5 篇 school of data s...
  • 5 篇 school of comput...
  • 5 篇 university of mi...
  • 5 篇 ton duc thang un...
  • 4 篇 college of compu...
  • 4 篇 semnan univ fac ...

作者

  • 12 篇 abualigah laith
  • 12 篇 ehteram mohammad
  • 9 篇 gandomi amir h.
  • 9 篇 hasanipanah mahd...
  • 9 篇 notarstefano giu...
  • 9 篇 ishibuchi hisao
  • 8 篇 zhan zhi-hui
  • 8 篇 zhang jun
  • 7 篇 rashid tarik a.
  • 7 篇 ahmed ali najah
  • 7 篇 hasanien hany m.
  • 7 篇 quirynen rien
  • 7 篇 pan jeng-shyang
  • 7 篇 zhang lijun
  • 6 篇 sundaram shreyas
  • 6 篇 neumann frank
  • 6 篇 wang lei
  • 6 篇 zhang lei
  • 6 篇 yang shengxiang
  • 6 篇 wei ermin

语言

  • 3,278 篇 英文
  • 662 篇 其他
  • 52 篇 中文
  • 5 篇 土耳其文
  • 4 篇 斯洛文尼亚文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 西班牙文
  • 1 篇 塞尔维亚文
检索条件"主题词=Optimization Algorithms"
4003 条 记 录,以下是1931-1940 订阅
排序:
The Performance Of The Unadjusted Langevin Algorithm Without Smoothness Assumptions
arXiv
收藏 引用
arXiv 2025年
作者: Johnston, Tim Lytras, Iosif Makras, Nikolaos Sabanis, Sotirios School of Mathematics University of Edinburgh United Kingdom National Technical University of Athens Greece Université Paris Dauphine-PSL Ceremade France Archimedes/Athena Research Centre Greece
In this article, we study the problem of sampling from distributions whose densities are not necessarily smooth nor logconcave. We propose a simple Langevin-based algorithm that does not rely on popular but computatio... 详细信息
来源: 评论
RL-finetuning LLMs from on- and off-policy data with a single algorithm
arXiv
收藏 引用
arXiv 2025年
作者: Tang, Yunhao Cohen, Taco Zhang, David W. Valko, Michal Munos, Rémi Meta GenAI United States Meta FAIR United States Meta United States
We introduce a novel reinforcement learning algorithm (AGRO, for Any-Generation Reward optimization) for fine-tuning large-language models. AGRO leverages the concept of generation consistency, which states that the o... 详细信息
来源: 评论
Evolving Convolutional Neural Networks with Meta-Heuristics for Transfer Learning in Computer Vision
收藏 引用
Procedia Computer Science 2023年 230卷 658-668页
作者: V Srilakshmi G Uday Kiran M Mounika A Sravanthi N V K Sravya V N S Akhil M Manasa
In the rapidly evolving landscape of computer vision and artificial intelligence, transfer learning has emerged as a powerful tool for efficiently applying pre-trained models to new tasks. This article delves into the... 详细信息
来源: 评论
Near-Optimal Decision Trees in a SPLIT Second
arXiv
收藏 引用
arXiv 2025年
作者: Babbar, Varun McTavish, Hayden Rudin, Cynthia Seltzer, Margo Department of Computer Science Duke University Durham United States Department of Computer Science University of British Columbia Vancouver Canada
Decision tree optimization is fundamental to interpretable machine learning. The most popular approach is to greedily search for the best feature at every decision point, which is fast but provably suboptimal. Recent ... 详细信息
来源: 评论
PAC Learnability of Scenario Decision-Making algorithms: Necessary and Sufficient Conditions
arXiv
收藏 引用
arXiv 2025年
作者: Berger, Guillaume O. Jungers, Raphaël M. Department of Applied Mathematics UCLouvain Louvain-la-Neuve1348 Belgium
We study the PAC property of scenario decision-making algorithms, that is, the ability to make a decision that has an arbitrarily low risk of violating an unknown safety constraint, provided sufficiently many realizat... 详细信息
来源: 评论
eagle: early approximated gradient based learning rate estimator
arXiv
收藏 引用
arXiv 2025年
作者: Fujimoto, Takumi Nishi, Hiroaki Faculty of Science and Technology Japan Center for Information and Computer Science School of Science for Open and Environmental Systems Keio University Japan
We propose EAGLE update rule, a novel optimization method that accelerates loss convergence during the early stages of training by leveraging both current and previous step parameter and gradient values. The update al... 详细信息
来源: 评论
Recovering Imbalanced Clusters via Gradient-Based Projection Pursuit
arXiv
收藏 引用
arXiv 2025年
作者: Eppert, Martin Mukherjee, Satyaki Ghoshdastidar, Debarghya Technical University of Munich School of Computation Information and Technology I7 Boltzmannstr. 3 Garching b München85748 Germany National University of Singapore Level 4 Block S17 10 Lower Kent Ridge Road Singapore119076 Singapore
Projection Pursuit is a classic exploratory technique for finding interesting projections of a dataset. We propose a method for recovering projections containing either Imbalanced Clusters or a Bernoulli-Rademacher di... 详细信息
来源: 评论
DADA: Dual Averaging with Distance Adaptation
arXiv
收藏 引用
arXiv 2025年
作者: Moshtaghifar, Mohammad Rodomanov, Anton Vankov, Daniil Stich, Sebastian U. Sharif University of Technology Iran CISPA Helmholtz Center for Information Security Germany Arizona State University United States
We present a novel universal gradient method for solving convex optimization problems. Our algorithm—Dual Averaging with Distance Adaptation (DADA)—is based on the classical scheme of dual averaging and dynamically ... 详细信息
来源: 评论
PROVABLY EFFICIENT MULTI-OBJECTIVE BANDIT algorithms UNDER PREFERENCE-CENTRIC CUSTOMIZATION
arXiv
收藏 引用
arXiv 2025年
作者: Cao, Linfeng Shi, Ming Shroff, Ness B. Department of CSE The Ohio State University United States Department of Electrical Engineering University at Buffalo United States Department of ECE The Ohio State University United States
Multi-objective multi-armed bandit (MO-MAB) problems traditionally aim to achieve Pareto optimality. However, real-world scenarios often involve users with varying preferences across objectives, resulting in a Pareto-... 详细信息
来源: 评论
Algorithmic approaches to avoiding bad local minima in nonconvex inconsistent feasibility
arXiv
收藏 引用
arXiv 2025年
作者: Dinh, Thi Lan Bennecke, Wiebke Jansen, G.S. Matthijs Luke, D. Russell Mathias, Stefan Institut für Numerische und Angewandte Mathematik Georg-August-Universität Göttingen Göttingen Germany I. Physikalisches Institut Georg-August-Universität Göttingen Göttingen Germany
The main challenge of nonconvex optimization is to find a global optimum, or at least to avoid "bad" local minima and meaningless stationary points. We study here the extent to which algorithms, as opposed t... 详细信息
来源: 评论