咨询与建议

限定检索结果

文献类型

  • 2,245 篇 期刊文献
  • 1,750 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 4,015 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,684 篇 工学
    • 2,115 篇 计算机科学与技术...
    • 1,479 篇 软件工程
    • 747 篇 电气工程
    • 615 篇 控制科学与工程
    • 333 篇 机械工程
    • 323 篇 信息与通信工程
    • 153 篇 动力工程及工程热...
    • 146 篇 石油与天然气工程
    • 132 篇 电子科学与技术(可...
    • 125 篇 土木工程
    • 91 篇 材料科学与工程(可...
    • 88 篇 仪器科学与技术
    • 75 篇 环境科学与工程(可...
    • 71 篇 交通运输工程
    • 69 篇 力学(可授工学、理...
    • 63 篇 建筑学
    • 61 篇 化学工程与技术
    • 55 篇 航空宇航科学与技...
    • 54 篇 水利工程
    • 47 篇 生物医学工程(可授...
  • 1,903 篇 理学
    • 1,476 篇 数学
    • 230 篇 系统科学
    • 199 篇 统计学(可授理学、...
    • 198 篇 物理学
    • 65 篇 化学
    • 60 篇 生物学
  • 391 篇 管理学
    • 338 篇 管理科学与工程(可...
    • 72 篇 工商管理
    • 49 篇 图书情报与档案管...
  • 96 篇 医学
  • 54 篇 经济学
    • 51 篇 应用经济学
  • 29 篇 农学
  • 21 篇 法学
  • 16 篇 教育学
  • 9 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 4,015 篇 optimization alg...
  • 269 篇 optimization
  • 190 篇 algorithms
  • 94 篇 machine learning
  • 88 篇 design
  • 64 篇 particle swarm o...
  • 55 篇 optimal control
  • 54 篇 genetic algorith...
  • 51 篇 convergence
  • 48 篇 objective functi...
  • 47 篇 genetic algorith...
  • 39 篇 simulation
  • 38 篇 optimal design
  • 38 篇 converge
  • 38 篇 artificial intel...
  • 34 篇 evolutionary alg...
  • 33 篇 predictive contr...
  • 33 篇 heuristic algori...
  • 32 篇 optimisation
  • 30 篇 deep learning

机构

  • 12 篇 duy tan univ ins...
  • 10 篇 national key lab...
  • 8 篇 amman arab univ ...
  • 7 篇 stanford univers...
  • 7 篇 univ technol syd...
  • 6 篇 georgia inst tec...
  • 6 篇 department of co...
  • 6 篇 google research ...
  • 6 篇 school of artifi...
  • 6 篇 semnan univ dept...
  • 5 篇 politecn milan d...
  • 5 篇 tu wien austria
  • 5 篇 ain shams univ f...
  • 5 篇 google deepmind ...
  • 5 篇 school of data s...
  • 5 篇 school of comput...
  • 5 篇 university of mi...
  • 5 篇 ton duc thang un...
  • 4 篇 college of compu...
  • 4 篇 semnan univ fac ...

作者

  • 12 篇 abualigah laith
  • 11 篇 ehteram mohammad
  • 9 篇 gandomi amir h.
  • 9 篇 hasanipanah mahd...
  • 9 篇 notarstefano giu...
  • 9 篇 ishibuchi hisao
  • 8 篇 zhan zhi-hui
  • 8 篇 zhang jun
  • 7 篇 neumann frank
  • 7 篇 rashid tarik a.
  • 7 篇 ahmed ali najah
  • 7 篇 hasanien hany m.
  • 7 篇 quirynen rien
  • 7 篇 pan jeng-shyang
  • 7 篇 zhang lijun
  • 6 篇 sundaram shreyas
  • 6 篇 neumann aneta
  • 6 篇 wang lei
  • 6 篇 zhang lei
  • 6 篇 yang shengxiang

语言

  • 3,506 篇 英文
  • 448 篇 其他
  • 52 篇 中文
  • 5 篇 土耳其文
  • 4 篇 斯洛文尼亚文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 西班牙文
  • 1 篇 塞尔维亚文
检索条件"主题词=Optimization Algorithms"
4015 条 记 录,以下是201-210 订阅
排序:
Enhancing machine learning optimization algorithms by leveraging memory caching
Enhancing machine learning optimization algorithms by levera...
收藏 引用
International Conference on High Performance Computing and Simulation
作者: Imen Chakroun Tom Vander Aa Tom Ashby Exascience Life Lab. IMEC Leuven Belgium
Searching a solution space using Stochastic Gradient Descent (SGD) depends on the examples picked at each iteration of the algorithm. Therefore, best practices suggest randomizing the order of training points to visit... 详细信息
来源: 评论
Exploiting Hidden Convexities for Real-time and Reliable optimization algorithms for Challenging Motion Planning and Control Applications  21
Exploiting Hidden Convexities for Real-time and Reliable Opt...
收藏 引用
Proceedings of the 20th International Conference on Autonomous Agents and MultiAgent Systems
作者: Fatemeh Rastgar University of Tartu Tartu Estonia
Motion Planning and Control algorithms are often formulated as optimization problems as desired robot behaviors can be intuitively encoded in the form of cost and constraint functions. A fundamental challenge in robot... 详细信息
来源: 评论
Development and testing of two simple metaphor-free optimization algorithms for solving real-life nonconvex constrained and unconstrained engineering problems
Research Square
收藏 引用
Research Square 2024年
作者: Rao, Ravipudi Venkata Shah, Ravikumar S. V. National Institute of Technology India
Two simple yet powerful optimization algorithms, named the Best-Mean-Random (BMR) and Best-Worst-Random (BWR) algorithms, are developed and presented in this paper to handle both constrained and unconstrained optimiza... 详细信息
来源: 评论
A Review of Population-Based optimization algorithms
A Review of Population-Based Optimization Algorithms
收藏 引用
Mathematics, Computer Engineering and Computer Science (ICMCECS), International Conference in
作者: Asegunloluwa Eunice Babalola Bolanle Adefowoke Ojokoh Julius Beneoluchi Odili Department of Mathematical Sciences Anchor University Lagos Nigeria Department of Information Technology Federal University of Technology Akure Nigeria
This paper discusses the different types of population-based optimization algorithms. It reviews several works done by a number of authors on these algorithms, highlighting their strengths and weaknesses. Specifically... 详细信息
来源: 评论
Distributed Robust Continuous-Time optimization algorithms for Time-Varying Constrained Cost
arXiv
收藏 引用
arXiv 2024年
作者: Ebrahimi, Zeinab Deghat, Mohammad School of Mechanical and Manufacturing Engineering University of New South Wales Sydney Australia
This paper presents a distributed continuous-time optimization framework aimed at overcoming the challenges posed by time-varying cost functions and constraints in multiagent systems, particularly those subject to dis... 详细信息
来源: 评论
Uncovering mesa-optimization algorithms in Transformers
arXiv
收藏 引用
arXiv 2023年
作者: von Oswald, Johannes Schlegel, Maximilian Meulemans, Alexander Kobayashi, Seijin Niklasson, Eyvind Zucchet, Nicolas Scherrer, Nino Miller, Nolan Sandler, Mark Agüera y Arcas, Blaise Vladymyrov, Max Pascanu, Razvan Sacramento, João Google Paradigms of Intelligence Team United States ETH Zürich Switzerland Google Research United States Google DeepMind United Kingdom
Some autoregressive models exhibit in-context learning capabilities: being able to learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so. The ... 详细信息
来源: 评论
General structure-based classification of optimization algorithms for an objective comparison
General structure-based classification of Optimization Algor...
收藏 引用
International Conference on Electromagnetics in Advanced Applications
作者: Alessandro Niccolai Carlo Andrea Gonano Francesco Grimaccia Marco Mussetta Riccardo Enrico Zich Politecnico di Milano via La Masa 34 20156 Milan Italy
The aim of this work is to introduce an effective tool in order to help the EM designer to select the best optimization algorithm through an easy-to-manage classification of Evolutionary algorithms. In fact, choosing ... 详细信息
来源: 评论
modOpt: A modular development environment and library for optimization algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Joshy, Anugrah Jo Hwang, John T. Department of Mechanical and Aerospace Engineering University of California San Diego La Jolla CA92093 United States
Applications of numerical optimization have appeared across a broad range of research fields, from finance and economics to the natural sciences and engineering. It is well known that the optimization techniques emplo... 详细信息
来源: 评论
Fast optimization algorithms for large-scale mixed-integer linear fractional programming problems
Fast optimization algorithms for large-scale mixed-integer l...
收藏 引用
American Control Conference
作者: Jiyao Gao Fengqi You Dept. of Chem. & Biol. Eng. Northwestern Univ. Evanston IL USA
We present three tailored algorithms for solving large-scale mixed-integer linear fractional programming (MILFP) problems. The first one combines Branch-and-Bound method with Charnes-Cooper transformation. The other t... 详细信息
来源: 评论
Fejér* monotonicity in optimization algorithms
arXiv
收藏 引用
arXiv 2024年
作者: Behling, Roger Bello-Cruz, Yunier Iusem, Alfredo Noel Ribeiro, Ademir Alves Santos, Luiz-Rafael Departamento de Matemática Universidade Federal de Santa Catarina SC Blumenau89065-300 Brazil Department of Mathematical Sciences Northern Illinois University DeKalbIL60115-2828 United States Escola de Matemática Aplicada Fundação Getúlio Vargas RJ Rio de Janeiro22250-900 Brazil Departamento de Matemática Universidade Federal do Paraná PR Curitiba81531-980 Brazil
Fejér monotonicity is a well-established property commonly observed in sequences generated by optimization algorithms. In this paper, we introduce an extension of this property, called Fejér* monotonicity, w... 详细信息
来源: 评论