咨询与建议

限定检索结果

文献类型

  • 2,245 篇 期刊文献
  • 1,750 篇 会议
  • 19 篇 学位论文
  • 1 册 图书

馆藏范围

  • 4,015 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 3,684 篇 工学
    • 2,115 篇 计算机科学与技术...
    • 1,479 篇 软件工程
    • 747 篇 电气工程
    • 615 篇 控制科学与工程
    • 333 篇 机械工程
    • 323 篇 信息与通信工程
    • 153 篇 动力工程及工程热...
    • 146 篇 石油与天然气工程
    • 132 篇 电子科学与技术(可...
    • 125 篇 土木工程
    • 91 篇 材料科学与工程(可...
    • 88 篇 仪器科学与技术
    • 75 篇 环境科学与工程(可...
    • 71 篇 交通运输工程
    • 69 篇 力学(可授工学、理...
    • 63 篇 建筑学
    • 61 篇 化学工程与技术
    • 55 篇 航空宇航科学与技...
    • 54 篇 水利工程
    • 47 篇 生物医学工程(可授...
  • 1,903 篇 理学
    • 1,476 篇 数学
    • 230 篇 系统科学
    • 199 篇 统计学(可授理学、...
    • 198 篇 物理学
    • 65 篇 化学
    • 60 篇 生物学
  • 391 篇 管理学
    • 338 篇 管理科学与工程(可...
    • 72 篇 工商管理
    • 49 篇 图书情报与档案管...
  • 96 篇 医学
  • 54 篇 经济学
    • 51 篇 应用经济学
  • 29 篇 农学
  • 21 篇 法学
  • 16 篇 教育学
  • 9 篇 文学
  • 3 篇 军事学
  • 2 篇 艺术学

主题

  • 4,015 篇 optimization alg...
  • 269 篇 optimization
  • 190 篇 algorithms
  • 94 篇 machine learning
  • 88 篇 design
  • 64 篇 particle swarm o...
  • 55 篇 optimal control
  • 54 篇 genetic algorith...
  • 51 篇 convergence
  • 48 篇 objective functi...
  • 47 篇 genetic algorith...
  • 39 篇 simulation
  • 38 篇 optimal design
  • 38 篇 converge
  • 38 篇 artificial intel...
  • 34 篇 evolutionary alg...
  • 33 篇 predictive contr...
  • 33 篇 heuristic algori...
  • 32 篇 optimisation
  • 30 篇 deep learning

机构

  • 12 篇 duy tan univ ins...
  • 10 篇 national key lab...
  • 8 篇 amman arab univ ...
  • 7 篇 stanford univers...
  • 7 篇 univ technol syd...
  • 6 篇 georgia inst tec...
  • 6 篇 department of co...
  • 6 篇 google research ...
  • 6 篇 school of artifi...
  • 6 篇 semnan univ dept...
  • 5 篇 politecn milan d...
  • 5 篇 tu wien austria
  • 5 篇 ain shams univ f...
  • 5 篇 google deepmind ...
  • 5 篇 school of data s...
  • 5 篇 school of comput...
  • 5 篇 university of mi...
  • 5 篇 ton duc thang un...
  • 4 篇 college of compu...
  • 4 篇 semnan univ fac ...

作者

  • 12 篇 abualigah laith
  • 11 篇 ehteram mohammad
  • 9 篇 gandomi amir h.
  • 9 篇 hasanipanah mahd...
  • 9 篇 notarstefano giu...
  • 9 篇 ishibuchi hisao
  • 8 篇 zhan zhi-hui
  • 8 篇 zhang jun
  • 7 篇 neumann frank
  • 7 篇 rashid tarik a.
  • 7 篇 ahmed ali najah
  • 7 篇 hasanien hany m.
  • 7 篇 quirynen rien
  • 7 篇 pan jeng-shyang
  • 7 篇 zhang lijun
  • 6 篇 sundaram shreyas
  • 6 篇 neumann aneta
  • 6 篇 wang lei
  • 6 篇 zhang lei
  • 6 篇 yang shengxiang

语言

  • 3,506 篇 英文
  • 448 篇 其他
  • 52 篇 中文
  • 5 篇 土耳其文
  • 4 篇 斯洛文尼亚文
  • 3 篇 法文
  • 1 篇 德文
  • 1 篇 西班牙文
  • 1 篇 塞尔维亚文
检索条件"主题词=Optimization Algorithms"
4015 条 记 录,以下是3891-3900 订阅
Less is more: zero-shot learning from online textual documents with noise suppression
Less is more: zero-shot learning from online textual documen...
收藏 引用
IEEE Conference on Computer Vision and Pattern Recognition
作者: Ruizhi Qiao Lingqiao Liu Chunhua Shen Anton van den Hengel Sch. of Comput. Sci. Univ. of Adelaide Adelaide SA Australia
Classifying a visual concept merely from its associated online textual source, such as a Wikipedia article, is an attractive research topic in zero-shot learning because it alleviates the burden of manually collecting... 详细信息
来源: 评论
Extended convexity and smoothness and their applications in deep learning
arXiv
收藏 引用
arXiv 2024年
作者: Qi, Binchuan Gong, Wei Li, Li College of Electronics and Information Engineering Tongji University Shanghai201804 China National Key Laboratory of Autonomous Intelligent Unmanned Systems Tongji University Shanghai201210 China Shanghai Research Institute for Intelligent Autonomous Systems Tongji University Shanghai201210 China
This paper introduces an optimization framework aimed at providing a theoretical foundation for a class of composite optimization problems, particularly those encountered in deep learning. In this framework, we introd... 详细信息
来源: 评论
Breaking the Speed and Scalability Barriers for Graph Exploration on Distributed-memory Machines  12
Breaking the Speed and Scalability Barriers for Graph Explor...
收藏 引用
ACM/IEEE International Conference for High Performance Computing, Networking, Storage, and Analysis
作者: Fabio Checconi Fabrizio Petrini Jeremiah Willcock Andrew Lumsdaine Anamitra Roy Choudhury Yogish Sabharwal IBM TJ Watson Yorktown Heights NY 10598 CREST Indiana University Bloomington IN 47405 IBM India Research New Delhi DL 110070 India
In this paper, we describe the challenges involved in designing a family of highly-efficient Breadth-First Search (BFS) algorithms and in optimizing these algorithms on the latest two generations of Blue Gene machines... 详细信息
来源: 评论
Motion Part Regularization: Improving Action Recognition via Trajectory Group Selection
Motion Part Regularization: Improving Action Recognition via...
收藏 引用
IEEE Conference on Computer Vision and Pattern Recognition
作者: Bingbing Ni Pierre Moulin Xiaokang Yang Shuicheng Yan ADSC Singapore Singapore
Dense local trajectories have been successfully used in action recognition. However, for most actions only a few local motion features (e.g., critical movement of hand, arm, leg etc.) are responsible for the action la... 详细信息
来源: 评论
GenJoin: Conditional Generative Plan-to-Plan Query Optimizer that Learns from Subplan Hints
arXiv
收藏 引用
arXiv 2024年
作者: Sulimov, Pavel Lehmann, Claude Stockinger, Kurt Zurich University of Applied Sciences Switzerland
Query optimization has become a research area where classical algorithms are being challenged by machine learning algorithms. At the same time, recent trends in learned query optimizers have shown that it is prudent t... 详细信息
来源: 评论
Jointly Learning Heterogeneous Features for RGB-D Activity Recognition
Jointly Learning Heterogeneous Features for RGB-D Activity R...
收藏 引用
IEEE Conference on Computer Vision and Pattern Recognition
作者: Jian-Fang Hu Wei-Shi Zheng Jianhuang Lai Jianguo Zhang School of Mathematics and Computational Science Sun Yat-sen University School of Information Science and Technology Sun Yat-sen University School of Computing University of Dundee
In this paper, we focus on heterogeneous feature learning for RGB-D activity recognition. Considering that features from different channels could share some similar hidden structures, we propose a joint learning model... 详细信息
来源: 评论
Application of Neural Network to Determine Parameters of the AEC of Synchronous Generator using Phasor Measurement Units
Application of Neural Network to Determine Parameters of the...
收藏 引用
International Youth Scientific and Technical Conference on Relay Protection and Automation (RPA)
作者: O.O. Nikolaeva T.G. Klimova Relay Protection and Automation of Power Systems Department National Research University Moscow Russia
Nowadays, there is a large number of phasor measurement units (PMU) installed in the power systems, which together form Wide Area Measurement System (WAMS). With a high accuracy, PMU measure complex current and voltag... 详细信息
来源: 评论
Research on Bearing Fault Diagnosis Method Based on Two-Dimensional Convolutional Neural Network
Research on Bearing Fault Diagnosis Method Based on Two-Dime...
收藏 引用
IEEE Instrumentation and Measurement Technology Conference
作者: Yuhang Wang He-sheng ZHANG Xiaotao Hu School of Electrical Engineering Beijing Jiaotong University Beijing China
Aiming at the problem that traditional bearing fault diagnosis methods rely on artificial feature extraction and expert experience, this paper proposes an adaptive bearing fault diagnosis method based on two-dimension... 详细信息
来源: 评论
An Asymptotically Optimal Algorithm for the Convex Hull Membership Problem
arXiv
收藏 引用
arXiv 2023年
作者: Qiao, Gang Tewari, Ambuj Department of Statistics University of Michigan United States
We study the convex hull membership (CHM) problem in the pure exploration setting where one aims to efficiently and accurately determine if a given point lies in the convex hull of means of a finite set of distributio... 详细信息
来源: 评论
Constrained Stochastic Recursive Momentum Successive Convex Approximation
arXiv
收藏 引用
arXiv 2024年
作者: Idrees, Basil M. Arora, Lavish Rajawat, Ketan
We consider stochastic optimization problems with non-convex functional constraints, such as those arising in trajectory generation, sparse approximation, and robust classification. To this end, we put forth a recursi... 详细信息
来源: 评论